期刊文献+

静水中扭波推进水动力的数值模拟(英文) 被引量:3

Numerical Simulation of Hydrodynamics of Torsional Wave Propulsion in Stationary Water
下载PDF
导出
摘要 尼罗河魔鬼鱼(GNF)采用长背鳍扭波推进,具有较高的推进效率和机动性,而鱼体主体可以保持直线不变形。为适应扭波推进过程中鳍面的大摆角变形,文中采用动网格技术求解了静水中扭波推进非定常流场,鳍面最大计算摆角达到85°,并通过与水动力实验结果比较验证了数值计算方法的可靠性。文中还分析了鳍面压力分布随相位的变化及其与推力产生的关系,以及水动力随扭波频率的脉动规律。研究表明,推力系数不随扭波频率而变化,轴向、垂向力波动频率是扭波频率的2倍,而侧向力脉动频率与扭波频率一致。 The Gymnarchus Niloticus Fish(GNF) with long dorsal-fin generally cruises with high efficiency and extra-ordinal maneuverability while it can keep its body for the straight line. The unsteady flow field of torsinal wave propulsion is calculated using the dynamic grid technique including spring-based smoothing model and local grid remeshing, which is adaptable to the fin surface deforming significantly for torsional wave propulsion at stationary water. In the present numerical simulation, the maximum swing amplitude of fin ray reaches 85°. The numerical simulation result is compared with hydrodynamics experiments result. The pressure distribution on the fin surface and its variation with fin ray phase, and the relationship with thrust force production, the force fluctuation with wave frequency are analyzed. The results indicate that the thrust force coefficients do not vary with fin wave frequency. The frequency of surge force and heave force are both 2 times of wave frequency while the sway force frequency is the same as the wave frequency.
出处 《船舶力学》 EI CSCD 北大核心 2016年第6期647-654,共8页 Journal of Ship Mechanics
基金 Supported by the National Natural Science Foundation of China(No.51379193)~~
关键词 扭波 仿生推进 数值计算 torsional wave bionic propulsion numerical simulation
  • 相关文献

参考文献2

二级参考文献16

  • 1Yong-hua Zhang,Lai-bing Jia,Shi-wu Zhang,Jie Yang,K. H. Low.Computational Research on Modular Undulating Fin for Biorobotic Underwater Propulsor[J].Journal of Bionic Engineering,2007,4(1):25-32. 被引量:17
  • 2WEBB P W.Form and function in fish swimming[J].Scientific American,1984,251(1):58-68. 被引量:1
  • 3SFAKIOTAKIS M,LANE D M,DAVIES J B C.Review of fish swimming modes for aquatic locomtion[J].IEEE J.Oceanic Engineering,1999,24(2):237-252. 被引量:1
  • 4LIGHTHILL M J.Mathematical biofluiddynamics[M].Philadelphia:SIAM,1975. 被引量:1
  • 5LIGHTHILL M J.Note on the swimming of slender fish[J].J.Fluid Mech.,1960,9:305-317. 被引量:1
  • 6LIGHTHILL M J.Aquatic animal propulsion of high hydromechanieal efficiency[J].J.Fluid Mech.,1970,44:265-301. 被引量:1
  • 7LIGHTHILL M J.Large-amplitude elongated-body theory of fish locomotion[C]//Proceedings of Royal Society of London,1971,B179:125-138. 被引量:1
  • 8WU T Y.Swimming of a waving plate[J].J.Fluid Mech.,1961,10:321-344. 被引量:1
  • 9WU T Y.Hydromechanics of swimming propulsion.Part 1.swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid[J].J.Fluid Mech.,1971,46:337-355. 被引量:1
  • 10WU T Y.Hydromechanies of swimming propulsion.Part 3.swimming and optimum movements of slender fish with side fins[J].J.Fluid Mech.,1971,46:545-568. 被引量:1

共引文献32

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部