摘要
Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole (F- PVDF/FeBO4@PPyx) fibers with core-sheath structure were successfully fabricated by electrospinning of a PVDF/Fe3O4 mixture and in situ chemical oxidative polymerization of pyrrole, followed by chemical vapor deposition with fluoroalkyl silane. The F-PVDF/Fe3O4@PPy0.075 fiber film produces a superhydrophobic surface with self-healing behavior, which can repetitively and automatically restore superhydrophobicity when the surface is chemically damaged. Moreover, the maximum refection loss (Ru) of the F-PVDF/Fe304@PPy0.075 fiber film reaches -21.5 dB at 16.8 GHz and the RL below -10 dB is in the frequency range of 10.6-16.5 GHz with a thickness of 2.5 mm. The microwave absorption performance is attributed to the synergetic effect between dielectric loss and magnetic loss originating from PPy, PVDF and Fe3O4. As a consequence, preparing such F-PVDF/Fe3O4@PPyx fibers in this manner provides a simple and effective route to develop multi-functional microwave absorbing materials for practical applications.
Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole (F- PVDF/FeBO4@PPyx) fibers with core-sheath structure were successfully fabricated by electrospinning of a PVDF/Fe3O4 mixture and in situ chemical oxidative polymerization of pyrrole, followed by chemical vapor deposition with fluoroalkyl silane. The F-PVDF/Fe3O4@PPy0.075 fiber film produces a superhydrophobic surface with self-healing behavior, which can repetitively and automatically restore superhydrophobicity when the surface is chemically damaged. Moreover, the maximum refection loss (Ru) of the F-PVDF/Fe304@PPy0.075 fiber film reaches -21.5 dB at 16.8 GHz and the RL below -10 dB is in the frequency range of 10.6-16.5 GHz with a thickness of 2.5 mm. The microwave absorption performance is attributed to the synergetic effect between dielectric loss and magnetic loss originating from PPy, PVDF and Fe3O4. As a consequence, preparing such F-PVDF/Fe3O4@PPyx fibers in this manner provides a simple and effective route to develop multi-functional microwave absorbing materials for practical applications.
基金
The work is supported by the National Natural Sdence Foundation of China (Nos. 51273008, 51473008, and 21103006), Beijing Natural Science Foundation (No. 2132030) and the National Basic Research Program of China (No. 2012CB933200).