期刊文献+

Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high- efficiency dye-sensitized solar cells 被引量:7

Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2 microspheres for high- efficiency dye-sensitized solar cells
原文传递
导出
摘要 A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallizafion are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dye- sensitized solar cells (DSSCs). The optimized TiO2 rnicrospheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3~ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity. A facile inside-out Ostwald ripening route to the morphology-controlled preparation of TiO2 microspheres is developed. Here, TiO2 hollow microspheres (HM) and solid microspheres (SM) are prepared by adjusting the volume ratio of isopropanol (IPA) to acetylacetone (Acac) in the solvothermal process. During the formation process of HM, precipitation of solid cores, subsequent deposition of outer shells on the surface of cores, and simultaneous core dissolution and shell recrystallizafion are observed, which validate the inside-out Ostwald ripening mechanism. Design and optimization of the properties (pore size, surface area, and trap state) of TiO2 microspheres are vital to the high performance of dye- sensitized solar cells (DSSCs). The optimized TiO2 rnicrospheres (rHM and rSM) obtained by post-processing on recrystallization, possess large pore sizes, high surface areas and reduced trap states (Ti3~ and oxygen vacancy), and are thus ideal materials for photovoltaic devices. The power conversion efficiency of DSSCs fabricated using rHM photoanode is 11.22%, which is significantly improved compared with the 10.54% efficiency of the rSM-based DSSC. Our work provides a strategy for synthesizing TiO2 microspheres that simultaneously accommodate different physical properties, in terms of surface area, crystallinity, morphology, and mesoporosity.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1891-1903,共13页 纳米研究(英文版)
基金 We acknowledge the Steady High Magnetic Field Facility in High Magnetic Field Laboratory, Chinese Academy of Sciences for the EPR measurement. This work was supported by the National Natural Science Foundation of China (Nos. 21173228 and 61204075), and the National High-Tech Research and Development Program of China (No. 2015AA050602).
关键词 Ostwald ripening dye-sensitized solar cell TiO2 microsphere hollow structure ACETYLACETONE Ostwald ripening,dye-sensitized solar cell,TiO2 microsphere,hollow structure,acetylacetone
  • 相关文献

参考文献1

共引文献4

同被引文献22

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部