期刊文献+

基于用户聚类的微博话题推荐算法 被引量:4

A recommendation algorithm of Micro-blog topic based on user clustering
下载PDF
导出
摘要 微博话题推荐算法的作用是当用户面临微博信息过载时,结合用户的基本信息,帮助用户找到对自己有价值的微博话题。微博推荐算法的核心任务是以用户信息为基础,分析用户的偏好,并推荐给其他信息相似的用户。本文提出的基于用户聚类的微博推荐算法包括三个层次,即用户微博话题特征提取、用户聚类、微博话题推荐。实验表明该系统的准确率达到50.2%,可准确地为用户进行微博话题推荐,并提高了用户浏览微博的效率。 The recommendation algorithm of micro-blog topic aims to help users find valuable micro-blog topic based on the users' basic information when overload information of micro-blog has occurred. The main tasks of the micro-blog recommendation algorithm are analyzing the users' preferences and recommending a special micro-blog topic to other users with similar information. This paper proposes a user clustering-based micro-blog topic recommendation algorithm which includes three levels, namely the users micro-blog topic features extraction, users clustering, and users recommendation. Experimental results show that the accuracy of the proposed system is up to 50.2%. It can accurately recommend micro-blog topic for users. Thus, the efficiency of browsing the micro-blog can be improved greatly.
出处 《阜阳师范学院学报(自然科学版)》 2016年第2期74-79,共6页 Journal of Fuyang Normal University(Natural Science)
基金 安徽省教育厅自然科学基金重点项目(KJ2015A111) 上海市信息安全综合管理技术研究重点实验室(上海交通大学)开放课题(AGK2013002)资助
关键词 微博话题 用户聚类 推荐 Micro-blog topic user clustering recommendation
  • 相关文献

参考文献8

  • 1项亮编著..推荐系统实践[M].北京:人民邮电出版社,2012:197.
  • 2陈克寒,韩盼盼,吴健.基于用户聚类的异构社交网络推荐算法[J].计算机学报,2013,36(2):349-359. 被引量:125
  • 3谢昊..基于主题模型的微博推荐系统研究[D].华东师范大学,2013:
  • 4蒋超..基于用户聚类和语义词典的微博推荐系统[D].浙江大学,2013:
  • 5赵钕森..基于用户行为的动态推荐系统算法研究及实现[D].电子科技大学,2013:
  • 6刘英..基于用户评论的个性化产品推荐系统[D].北京邮电大学,2015:
  • 7慕福楠..面向微博用户的推荐多样性研究[D].哈尔滨工业大学,2013:
  • 8赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140

二级参考文献15

  • 1Chen J, Geyer W, Dugan C, Muller M, Guy I. Make new friends, but keep the old: Recommending people on social networking sites//Proceedings of the 27th International Conference on Human Factors in Computing Systems. New York, NY, USA, 2009 201-210. 被引量:1
  • 2Sarwar B M, Karypis G, Konstan J A, Riedl John. Analysis of recommendation algorithms for e-commerce//Proceedings of the 2nd ACM Conference on Electronic Commerce (EC-00). Minneapolis, MN, USA, 2000:158 167. 被引量:1
  • 3Linden Greg, Smith Brent, York Jeremy, Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80. 被引量:1
  • 4Pazzani M J, Billsus D. Content based recommendation systems//Brusilovsky P et al eds. The Adaptive Web. Springer Verlag, 2007:325 341. 被引量:1
  • 5Mislove Alan, Marcon Massimiliano, Gummadi Krishna P, Druschel Peter, Bhattacharjee Bobby. Measurement and analysis of online social networks//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. San Diego, CA, USA, 2007:29 /i2. 被引量:1
  • 6Piao Scott, Whittle Jon. A feasibility study on extracting twitter users' interests using NLP tools for serendipitous connections//Proceedings of the 3rd IEEE International Conference on Social Computing (SocialCom 2011). Boston, MA, 2011= 910 915. 被引量:1
  • 7Sakaguchi T, Akaho Y, Takagi T, Shintani T. Recommen dations in twitter using conceptual {uzzy sets//Proceedings of the 2010 Annual Meeting of the North American Fuzzy lnfor mation Processing Society (NAFIPS). Toronto, Canada, 2010:1 6. 被引量:1
  • 8Granovetter M. The strength of weak ties. American Journal of Sociology, 1973, 78(6).- 1360 1380. 被引量:1
  • 9Harmon John, Bennett Mike, Smyth Barry. Recommending twitter users to follow using content and collaborative filte ring approaches//Proceedings of the 4th ACM Conference on Recommender Systems ( RecSys ' 10 ). Barcelona, Spain, 2010, 199 206. 被引量:1
  • 10Kim Younghoon, Shim Kyuseok. TWITOB| A recommen dation system for twitter using probabilistic modeling//Pro ceedings of the 2011 IEEE llth International Conference on Data Mining(ICDM). Vancouver, Canada, 2011 340 349. 被引量:1

共引文献262

同被引文献46

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部