期刊文献+

针对未知稀疏信号的压缩自相关检测算法 被引量:1

Compressive Autocorrelation Detecting Algorithm for Unknown Sparse Signal
下载PDF
导出
摘要 针对未知的宽频带稀疏信号检测问题,提出了一种直接基于非重构采样值的压缩自相关检测算法。首先利用压缩感知技术以远低于奈奎斯特采样速率获取信号,在自相关矩阵检测信号理论的基础上,利用压缩感知中传感矩阵的严格等距特性,推导出基于统计分布的信号稀疏系数自相关检测算法,从理论上给出了判决门限的选取和虚警概率之间的关系,并进行了算法复杂度分析。由于无需重构原始信号,该算法直接利用少量的压缩测量值进行检测,可以有效地提高检测过程的时效性。仿真表明在较低的信噪比时,该算法对未知信号仍有良好的检测性能。 Abstract: A compressive autocorrelation detection problem of unknown high bandwidth sparse signals. lized to acquire the signals at a sampling rate which algorithm is proposed for overcoming the detection Firstly, the compressive sensing technology is unuti- is far lower than Nyquist sampling rate. Then based on researching autocorrelation matrix theories of signal detection, a sparse coefficients compressive auto- correlation detection algorithm using statistical distribution is deduced through the restricted isometry property of the sensing matrix and the compressive samplings are dealt with directly. The connection is subsequently obtained between the decision threshold and the false alarm probability theoretically. More- over, the computational complexity of the algorithm is analyzed. Therefore, the method can improve the detection timeliness efficiently through few compressive samplings without reconstructing signal. Simula- tions show that the proposed algorithm still perform well in unknown signal detection with low signal-to- noise ratio.
出处 《数据采集与处理》 CSCD 北大核心 2016年第3期606-613,共8页 Journal of Data Acquisition and Processing
关键词 未知信号检测 压缩感知 非重构 自相关检测 Key words: unknown signal detection compressive sampling (CS) non-reconstruction autocorrelationdetection
  • 相关文献

参考文献19

  • 1Eldar Y, Kutyniok G. Compressed sensing.. Theory and applications [M]. Cambridge: Cambridge University Press, 2012. 被引量:1
  • 2Candes E. Compressive sampling [C]//Proceedings of the International Congress of Mathematicians. Madrid, Spain: [s. n. ], 2006 : 1433-1452. 被引量:1
  • 3Candes E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 4Candes E, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies [J]. IEEE Transac- tions on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 5Donoho D. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4) : 1289-1306. 被引量:1
  • 6王蔚东,杨俊安.基于梯度追踪的压缩感知超宽带通信信道估计[J].数据采集与处理,2013,28(3):301-306. 被引量:8
  • 7张弓,杨萌,张劲东,陶宇.压缩感知在雷达目标探测与识别中的研究进展[J].数据采集与处理,2012,27(1):1-12. 被引量:24
  • 8Duarte M, Davenport M, Wakin M, et al. Sparse signal detection from incoherent projection[C]//Acoustics, Speech, and Signal Processing(ICASSP), International Conference on. Toulouse, France : IEEE, 2006 : 305-308. 被引量:1
  • 9Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. Information Theo- ry, IEEE Transactions on, 2007, 53(12): 4655-4666. 被引量:1
  • 10刘记红,黎湘,徐少坤,庄钊文.基于改进正交匹配追踪算法的压缩感知雷达成像方法[J].电子与信息学报,2012,34(6):1344-1350. 被引量:17

二级参考文献154

  • 1杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报,2006,34(3):491-495. 被引量:9
  • 2DONOHO D L. Compressed sensing[J].IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 3CANDES E, ROMBERG J, TERENCE T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 4BARANIUK R. A lecture Compressive sensing[J].IEEE Signal Processing Magazine, 2007, 24(4): 118-121. 被引量:1
  • 5CANDES E, TERENCE T. Near optimal signal recovery from random projections: Universal encoding strategies[J].IEEE Transaction on Information Theory, 2006, 52(12): 5406-5425. 被引量:1
  • 6CANDES E, ROMBERG J, TERENCE T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm. Pure. Appl. Math, 2006, 59(8): 1207-1223. 被引量:1
  • 7HAPPUT J, NOWAK R. Signal reconstruction from noisy random projections[J].IEEE Transaction on Information Theory, 2006, 52(9): 4306-4048. 被引量:1
  • 8NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J].Appl. Com PHarmonic Aal, 2009, 76(3): 301-321. 被引量:1
  • 9DAVENPORT M, WAKIN M, BARANIUK R. Detection and Estimation with Compressive Measurements[R].Houston TX USA: Rice ECE Department , 2006: 3-13. 被引量:1
  • 10HAUPT J, NOWAK R. Compressed sampling for signal detection[C].IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, Hawaii, April 2007, 1509-1512. 被引量:1

共引文献107

同被引文献16

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部