期刊文献+

变压器油中颗粒污染物的中红外光谱检测 被引量:7

Detection on Particulate PollutantinTransformer oil Based on the Mid-Infrared Spectrum
下载PDF
导出
摘要 配制了含不同颗粒污染等级的变压器油样,利用中红外光谱扫描获得油样的红外光谱数据,再采用连续投影算法提取油样红外光谱的有效波长变量,分别应用偏最小二乘法和支持向量机法方法建立了颗粒污染等级与中红外光谱有效波长的模型.所配置的油样红外光谱经过连续投影算法提取的有效波长具有特定颗粒污染物特征波长的特点,所建两种模型的预测效果均优于全谱的偏最小二乘法和支持向量机法模型,对验证集样本数据预测的决定系数分别为0.892 9、0.934 3,均方根误差为6.372×10-3、3.07×10-3,获得了较好的预测效果,为变压器油中颗粒物的检测提供了借鉴. The different particle pollution degree in transformer oil samples were made up, the infrared spectrum data of the oil samples were acquired by using the infrared spectrum scanning. Using the successive proiections algorithm, the effective wavelength variables of the oil samples were extracted. Based on the extracted wavelength variables, two models of both the effective wavelength of the infrared spectrum and the particle contamination pollution degree were established by using partial least squares and support vector machine method. The effective wavelength of successive projections algorithm extracted from the infrared spectrum of transformer oil samples has the characteristics of the wavelength of specific particle contamination, and the prediction effects of the models are better than partial least squares model and support vector machine model using the full infrared spectrum data of the oil samples. Besides, the determination coefficient of the prediction set of oil samples are 0. 892 9, 0. 934 3 respectively with the two models, and the root mean square error are6.372×10^-3、3.07×10^-3 respectively, thereby the satisfactory prediction results has achieved, these provide a reference for the detection of the particle contamination in transformer oil.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第5期168-172,共5页 Acta Photonica Sinica
基金 国家自然科学基金(No.51375516) 重庆基础与前沿研究项目(Nos.cstc2014jcyjA90015 cstc2013jcyjA90021)资助~~
关键词 污染物检测 光谱分析 连续投影算法 偏最小二乘法 支持向量机 变压器油 颗粒污染物 Pollutant detection Spectrum analysis Successive Projections Algorithm Partial LeastSquares Support Vector Machine Transformer oil Particulate pollutant
  • 相关文献

参考文献6

二级参考文献50

  • 1胡志华,刘磊,周芳德,杨燕华.油水两相乳化液流动特性的实验研究[J].上海交通大学学报,2005,39(2):314-316. 被引量:19
  • 2周鑫.在用车发动机油快速检测质量的研究[J].汽车工艺与材料,2005(7):39-45. 被引量:7
  • 3尹东霞,马沛生,夏淑倩.液体表面张力测定方法的研究进展[J].科技通报,2007,23(3):424-429. 被引量:71
  • 4Wu D, He Y, Shi J H, et al. Exploring Near and Mid- infrared Spectroscopy to Predict Trace Iron and Zinc Contents in Powdered Milk [J]. Journal of Agricul- tural and Food Chemistry, 2009, 57(5): 1697-1704. 被引量:1
  • 5Wu D, tion of Edible proved Chen X J, Shi P Y, et al. Determina- Alpha-linolenic Acid and Linoleic Acid in Oils Using Near-infrared Spectroscopy Im- by Wavelet Transform and Uninformative Variable Elimination [J]. Analytica Chimica Acta. 2009, 634(2): 166-171. 被引量:1
  • 6Wu D, He Y, Feng S. Short-wave near-infrared Spec- troscopy Analysis of Major Compounds in Milk Pow- der and Wavelength Assignment [J]. Analytica Chim- ica Acta, 2008, 610(2): 232 -242. 被引量:1
  • 7Araijo M C U, Saldanha T C B, Galvao R K H, et al. The Successive Projections Algorithm for Variable Selection in Spectroscopic Multicomponent Analysis [J]. Chemometrics and Intelligent Laboratory Sys- tems, 2001, 57(2): 65- 73. 被引量:1
  • 8Galvao R K H, Araujo M C U, Fragoso W D, et al. A Variable Elimination Method to Improve The Par- simony of MLR Models Using The Successive Pro- jections Algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(4): 83 -91. 被引量:1
  • 9Centner V, Massart D L, Noord O E, et al. Elim- ination of Uninformative Variables for Multivariate Calibration [J]. Analytical Chemistry, 1996, 68(21): 3851- 3858. 被引量:1
  • 10Wu D, He Y, Feng S J, et al. Study on Infrared Spec- troscopy Technique for Fast Measurement of Protein Content in Milk Powder Based on LS-SVM [J]. Jour- nal of Food Engineering, 2008, 84(1): 124 -131. 被引量:1

共引文献32

同被引文献116

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部