期刊文献+

IGCC电站水煤气变换过程的优化研究 被引量:2

Optimization on Water Gas Shift Process in IGCC Power Plant
下载PDF
导出
摘要 提出一种新型的水煤气变换反应过程,利用水煤气变换反应释放的热量加热进入燃气轮机的合成气,并建立了基于Aspen Plus的IGCC电站模型.比较了燃烧前捕集CO2对IGCC电站发电量、厂用电耗率和供电效率等特性的影响,分析了新型水煤气变换反应过程中2个关键参数对电站性能的影响规律.结果表明:降低进入WGS装置的合成气的H2O与CO物质的量比以及提高合成气加热温度均有利于降低IGCC电站的厂用电耗率和提高供电效率;本文中结果与先前研究结果一致性较好.采用优化的水煤气变换操作参数后,IGCC电站的厂用电耗率降低1.3%,供电效率提高2.7%. A novel water gas shift (WGS) process was proposed, where the heat released in WGS reaction can be utilized to heat the syngas before entering into the gas turbine, while a process model was set up for the whole integrated gasification combined cycle (IGCC) unit using Aspen Plus software, based on which the effects of pre-combustion CO2 capture on the power output, auxiliary power consumption rate and plant net efficiency of the unit were evaluated, and simultaneously the variation of two key parameters of the novel WGS process and their influences on the unit performance were analyzed. Results show that it is beneficial to decrease the auxiliary power consumption rate and increase the plant net efficiency by reducing the mole ratio of H2O/CO in syngas that entering into WGS reactor and by increasing the final heating temperature of syngas. These findings agree well with those of previous studies. By adopting the optimized operating parameters for the WGS process, the auxiliary power consumption rate and the plant net efficiency are respectively decreased by 1.3 % and increased by 2.7 %.
出处 《动力工程学报》 CAS CSCD 北大核心 2016年第6期480-485,共6页 Journal of Chinese Society of Power Engineering
基金 南方电网公司科技基金资助项目(K-GD2013-0488)
关键词 IGCC电站 二氧化碳捕集 水煤气变换 过程优化 IGCC power plant CO2 capture water gas shift process optimization
  • 相关文献

参考文献11

  • 1绿色煤电有限公司编著..挑战全球气候变化 二氧化碳捕集与封存[M].北京:中国水利水电出版社,2008:306.
  • 2迟金玲,张士杰,王波,肖云汉.CO_2捕集对输运床气化炉IGCC系统技术经济性的影响[J].中国电机工程学报,2013,33(23):51-59. 被引量:5
  • 3段立强,孙思宇,卞境,乐龙,杨勇平.集成氧离子传输膜的CO_2零排放IGCC系统研究[J].中国电机工程学报,2014,34(23):3874-3882. 被引量:6
  • 4PARK S H, LEES J, LEEJ W, etal. The quanti-tative evaluation of two-stage pre-combustion COz capture processes using the physical solvents with va- rious design parameters[J]. Energy, 2015, 81: 47- 55. 被引量:1
  • 5MUKHERJEE S, KUMAR P, HOSSEINI A, etal. Comparative assessment of gasification based coal power plants with various COz capture technologies producing electricity and hydrogen[J]. Energy & Fu- el, 2014, 28(2): 1028-1040. . 被引量:1
  • 6REZVANI S, HUANG Y, MCILVEEN-WRIGHT D, et al. Comparative assessment of coal fired IGCC systems with COz capture using physical absorption, membrane reactors and chemical looping [J]. Fuel, 2009, 88(12): 2463-2472. 被引量:1
  • 7邓广义,韩龙,范永春,马雪松,郑赟,吴家凯.水煤浆气化合成气显热回收对IGCC电站性能的影响[J].动力工程学报,2014,34(12):985-989. 被引量:2
  • 8MARTELLI E, KREUTZ T, CARBO M, et al. Shell coal IGCCS with carbon capture== conventional gas quench vs. innovative configurations[J]. Applied Energy, 2011, 88(11).- 3978-3989. 被引量:1
  • 9CHEN Chao, RUBIN E S. CO2 control technology effects on IGCC plant performance and cost[J]. Ener- gy Policy, 2009, 37(3): 915-924. 被引量:1
  • 10KUNZE C, SPLIETHOFF H. Modeling of an IGCC plant with carbon capture for 2020[J]. Fuel Process- ing Technology, 2010, 91(8)= 934-941. 被引量:1

二级参考文献42

  • 1周健儿,朱志刚,梁健,马光华,顾幸勇.钙钛矿型混合导体透氧膜的研究[J].中国陶瓷工业,2001,8(4):41-45. 被引量:3
  • 2黄斌,刘练波,许世森.二氧化碳的捕获和封存技术进展[J].中国电力,2007,40(3):14-17. 被引量:68
  • 3王俊有,李太兴,刘振刚,高子钦.IGCC环保特性的研究[J].燃气轮机技术,2007,20(2):15-17. 被引量:20
  • 4Rezvani S, Huang Y, McIlveen-Wright D, et al. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping[J]. Fuel, 2009, 88(12): 2463-2472. 被引量:1
  • 5Berstad D, Neksa P, Gjovag G A. Low-temperature syngas separation and CO2 capture for enhanced efficiency of IGCC power plants[J]. Energy Procedia, 2011(4): 1260-1267. 被引量:1
  • 6Skorek-OsikowskaA, Janusz-Szymanska K, Kotowicz J. Modeling and analysis of selected carbon dioxide capture methods in IGCC systems[J]. Energy, 2012, 45(1): 92-100. 被引量:1
  • 7DOE/NETL, Kemper country integrated gasification combined-cycle(IGCC)Project , Final environmental impact statement[R]. KemperCounty, Mississippi: U.S. Department of Energy, National Energy Technology Laboratory, 2010. 被引量:1
  • 8Giuffrida A, Romano M C, Lozza G. Thermodynamic analysis of air-blown gasification for IGCC applications[J]. Applied Energy, 2011, 88(11): 3949-3958. 被引量:1
  • 9DOE/NETL. Transport gasifer IGCC base cases[EB/OL]. 2000 . http://www.netl.doe.gov/technologies/coalpower/ gasification/pubs/pdf/system/trnspt3x.pdf. 被引量:1
  • 10Bonsu A K, Eiland J D, Gardner B F, et al., Power from PRB-Four conceptual IGCC plant designs using the transport gasifier[C]//20th International Pittsburgh Coal Conference, Pittsburgh, PA, 2005. 被引量:1

共引文献10

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部