摘要
提出一种新型的水煤气变换反应过程,利用水煤气变换反应释放的热量加热进入燃气轮机的合成气,并建立了基于Aspen Plus的IGCC电站模型.比较了燃烧前捕集CO2对IGCC电站发电量、厂用电耗率和供电效率等特性的影响,分析了新型水煤气变换反应过程中2个关键参数对电站性能的影响规律.结果表明:降低进入WGS装置的合成气的H2O与CO物质的量比以及提高合成气加热温度均有利于降低IGCC电站的厂用电耗率和提高供电效率;本文中结果与先前研究结果一致性较好.采用优化的水煤气变换操作参数后,IGCC电站的厂用电耗率降低1.3%,供电效率提高2.7%.
A novel water gas shift (WGS) process was proposed, where the heat released in WGS reaction can be utilized to heat the syngas before entering into the gas turbine, while a process model was set up for the whole integrated gasification combined cycle (IGCC) unit using Aspen Plus software, based on which the effects of pre-combustion CO2 capture on the power output, auxiliary power consumption rate and plant net efficiency of the unit were evaluated, and simultaneously the variation of two key parameters of the novel WGS process and their influences on the unit performance were analyzed. Results show that it is beneficial to decrease the auxiliary power consumption rate and increase the plant net efficiency by reducing the mole ratio of H2O/CO in syngas that entering into WGS reactor and by increasing the final heating temperature of syngas. These findings agree well with those of previous studies. By adopting the optimized operating parameters for the WGS process, the auxiliary power consumption rate and the plant net efficiency are respectively decreased by 1.3 % and increased by 2.7 %.
出处
《动力工程学报》
CAS
CSCD
北大核心
2016年第6期480-485,共6页
Journal of Chinese Society of Power Engineering
基金
南方电网公司科技基金资助项目(K-GD2013-0488)