期刊文献+

挤压铜扁线的物理性能检测

Physical properties of extruded copper flat wire
下载PDF
导出
摘要 采用连续挤压方法生产铜扁线作为一种新型工艺,对挤压铜扁线的物理性能检测,改善铜扁线的导电性、延展性和抗拉强度,分析了挤压铜扁线物理性能检测的不同方法,分别对超声波检测、荧光检测、热塑淬火检测、荷载检测方法进行描述,通过论证对比确定各种方法检测挤压铜扁线的物理性能的优劣,并对检测中的注意事项和检测要领进行了简单阐述,指导连续挤压方法生产铜扁线工艺的改进,改善挤压铜扁线的物理性能。 With the continuous extrusion method to produce copper flat wire as a new technology, of extrusion detection of the physical properties of flat copper wire, copper flat wire conductivity, ductility and tensile strength improvement, analyzes the extrusion of copper flat wire detection of the physical properties of different methods, respectively for ultrasonic testing, spectkum detection, thermal plastic quench detection, load detection method described. Through the comparison and analysis to determine the advantages and disadvantages of the physical properties of the copper flat wire extrusion of various methods for detecting, and the detection and points for attention in the detection of essentials, carried on the simple elaboration and guide the continuous extrusion method for producing copper flat wire technology is improved, the improvement of extrusion and the physical properties of the copper flat wire.
作者 王红英
出处 《世界有色金属》 2016年第5期124-125,共2页 World Nonferrous Metals
关键词 挤压铜扁线 物理性能 检测 extruded copper flat wire physical properties detection
  • 相关文献

参考文献2

二级参考文献57

  • 1邵剑龙,叶艳青,徐武.VRML虚拟场景中Java编程功能的实现[J].计算机与应用化学,2004,21(4):641-644. 被引量:6
  • 2叶艳青,邵建龙,念晓.基于VRML的网络交互式虚拟现实建模研究[J].系统仿真学报,2006,18(10):2827-2831. 被引量:14
  • 3Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herin Z R, Bae T, Long J R. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev, 2012, 112(2): 724-781. 被引量:1
  • 4Wu D, Yang Q, Zhong C, Liu D, Huang H, Zhang W, Maurin G. Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas[J]. Langmuir, 2012, 28(33): 12094-12099. 被引量:1
  • 5Yan Q, Lin Y, Kong C, Chen L. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents[J]. Chem. Commun., 2013, 49: 6873-6875. 被引量:1
  • 6Bae Y, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture[J]. Angew. Chem. lnt. Ed., 2011, 50:11586-11596. 被引量:1
  • 7Stavitski E, Pidko E A, Couck S, Remy T, Hensen E J M, Weckhuysen B M, Denayer J, Gascon J, Kapteijn F. Complexity behind CO2 capture on NH2-MIL-53(AI) [J]. Langmuir, 2011, 27: 3970-3976. 被引量:1
  • 8Yang Q, Vaesen S, Ragon F, Wiersum A D, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn P L, Jobic H, Zhong C, Serre C, Weireld G D, Maurin G. A water stable metal-organic frameworks with optimal features for CO2 capture[J]. Angew. Chem. lnd. Ed., 2013, 52:10316-10320. 被引量:1
  • 9Huang H, Zhang W, Liu D, Liu B, Chen G, Zhong C. Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study[J]. Chem. Eng. Sci., 2011, 66:6297-6305. 被引量:1
  • 10Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38:1294-1314. 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部