期刊文献+

Retrieve Sea Surface Salinity Using Principal Component Regression Model Based on SMOS Satellite Data 被引量:5

Retrieve Sea Surface Salinity Using Principal Component Regression Model Based on SMOS Satellite Data
下载PDF
导出
摘要 The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?–25?N, 105?–125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data. The sea surface salinity(SSS) is a key parameter in monitoring ocean states. Observing SSS can promote the understanding of global water cycle. This paper provides a new approach for retrieving sea surface salinity from Soil Moisture and Ocean Salinity(SMOS) satellite data. Based on the principal component regression(PCR) model, SSS can also be retrieved from the brightness temperature data of SMOS L2 measurements and Auxiliary data. 26 pair matchup data is used in model validation for the South China Sea(in the area of 4?-25?N, 105?-125?E). The RMSE value of PCR model retrieved SSS reaches 0.37 psu(practical salinity units) and the RMSE of SMOS SSS1 is 1.65 psu when compared with in-situ SSS. The corresponding Argo daily salinity data during April to June 2013 is also used in our validation with RMSE value 0.46 psu compared to 1.82 psu for daily averaged SMOS L2 products. This indicates that the PCR model is valid and may provide us with a good approach for retrieving SSS from SMOS satellite data.
出处 《Journal of Ocean University of China》 SCIE CAS 2016年第3期399-406,共8页 中国海洋大学学报(英文版)
基金 supported by the National Natural Science Foundation of China under project 41275013 the National High-Tech Research and development program of China under project 2013AA09A506-4 the National Basic Research Program under project 2009CB723903
关键词 sea surface salinity retrieved algorithm SMOS principle component regression 主成分回归 回归模型 卫星数据 盐度 表面 反演 数据检索 模型验证
  • 相关文献

参考文献26

  • 1Boutin, J., and Martin, N., 2006. ARGO upper salinity meas- urements: Perspectives for L-band radiometers calibration and retrieved sea surface salinity validation. IEEE Geoscience and Remote Sensing Letters, 3 (2): 202-206. 被引量:1
  • 2Boutin, J., Martin, N., Reverdin, G., Yin, X., and Gaillard, F., 2013. Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain. Ocean Science, 9:183-192. 被引量:1
  • 3Boutin, J., Martin, N., Yin, X., Font, J., Reul, N., and Spurgeon, P., 2012. First assessment of SMOS data over open ocean: Part II-Sea surface salinity. 1EEE Transactions on Geoscience andRemote Sensing, 50 (5): 1662-1675. 被引量:1
  • 4Camps, A., Vall-llossera, M., Duffo, N., Torres, F., and Corbella, I., 2005. Performance of sea surface salinity and soil moisture retrieval algorithms with different auxiliary datasets in 2-D L-Band aperture synthesis interferometric radiometers. 1EEE Transactions on Geoscience and Remote Sensing, 43 (5): 1189-1200. 被引量:1
  • 5Camps, A., Vall-llossera, M., Miranda, J., and Font, J., 2004. Sea surface brightness temperature at L-band: Impact of sur- face currents. Geoscience and Remote Sensing Symposium, 5: 3481-3484. 被引量:1
  • 6Feng, S. Z., Li, F. Q., and Li, S. J., 1999. Introduction to Marine Science. Higher Education Press, Beijing, 503pp. 被引量:1
  • 7Font, J., Camps, A., Borges, A., Martin-Neira, M., Boutin, J., Reul, N., Kerr, Y., Hahne, A., and Mecklenburg, S., 2010.SMOS: The challenging measurement of sea surface salinity from space. Proceedings of the IEEE, 98 (5): 649-665. 被引量:1
  • 8Gabarr6, C., Portabella, M., Talone, M,, and Font, J., 2009. Toward an optimal SMOS ocean salinity inversion algorithm. IEEE Geoscience and Remote Sensing Letters, 6 (3): 509-513. 被引量:1
  • 9Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M. J., Font, J., Reul, N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S., 2010. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 98: 666-687. 被引量:1
  • 10Marghany, M., 2009. Linear algorithm for salinity distribution modelling from MODIS data. Geoscience and Remote Sens- ing Symposium, 2009 IEEE International, 1GARSS 2009, 3: 365-368. 被引量:1

同被引文献32

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部