期刊文献+

基于混合高斯模型的配电网负荷伪量测权重优化算法 被引量:5

Optimization Algorithm for Pseudo Measurement Weight of Power Distribution Network Load Based on Gaussian Mixture Model
下载PDF
导出
摘要 提出一种基于高斯混合模型(Gaussian mixture model,GMM)的配电网负荷量测权重优化算法,包括对GMM参数的优化和权重确定。首先采用引力搜索算法(gravitational search algorithm,GSA)对数据的最佳聚类个数进行判断,利用K-means算法获取数据的初始聚类中心、方差和混合权重;然后通过组合马尔科夫链蒙特卡洛期望最大化(Markov chain Monte Carlo-expectation maximum,MCMC-EM)算法对GMM的参数进行估计;最后根据优化的GMM,提出负荷伪量测权重优化方法,确定负荷伪量测的权重。以改进IEEE-12节点系统对所提方法进行验证,结果表明其合理、有效。 A kind of optimization algorithm for load measurement weight of power distribution network based on Gaussian mixture model(GMM)is presented which includes optimization and weight confirmation for GMM parameters.It firstly uses gravitational search algorithm(GSA)to judge optimal clusteringnumbers of data and K-means algorithm to obtain an initial clustering center,variance and mixed weight of data.Then it uses Markov chain Monte Carlo-expectation maximum(MCMC-EM)algorithm to estimate GMM parameters.Finally it presents the optimization method for pseudo measurement weight of load according to optimized GMM so as to confirm pseudo measurement weight of load.Improved IEEE-12 node system is taken for an example to verify the proposed method and the result indicates its reasonability and effectiveness.
出处 《广东电力》 2016年第5期86-91,123,共7页 Guangdong Electric Power
关键词 配电网 状态估计 伪量测权重 高斯混合模型 组合马尔科夫链蒙特卡洛期望最大化算法 power distribution network state estimation pseudo measurement weight Gaussian mixture model(GMM) Markov chain Monte Carlo-expectation maximum(MCMC-EM)
  • 相关文献

参考文献14

  • 1FIKRI Z. Statistical Load Analysis for Distribution Network Planning ID3. Sweden: Royal Inst. Technol., Stockholm, 1975. 被引量:1
  • 2LIMAYE D R, WHITMORE C. Selected Statistical Methods for Analysis of Load Research Data: EPRI-EA-3467[R]. Ba- la-Cynwyd: United States Synergic Resources Corp. , 1984. 被引量:1
  • 3IRWIN G W, MONTEITH W, BEATTIE W C. Statistical E- lectricity Demand Modelling from Consumer Billing Data[J]. IEEE Proceedings C (Generation, Transmission and Distribu- tion), 1986, 133(6): 328-335. 被引量:1
  • 4SEPPALA A. Statistical Distribution of Customer Load Pro- files[C]//1995 International Conference on Energy Manage- ment and Power Delivery. [S. 1. ] : IEEE, 1995: 696-701. 被引量:1
  • 5HERMAN R, KRITZINGER J J. The Statistical Description of Grouped Domestic Electrical Load Currents [J] Electric Power Systems Research, 1993, 27(1): 43-48. 被引量:1
  • 6GHQSH_.A_ K, LUBKEMAN D L, DOWNEY M J tribution Circuit State Estimation Using a Probabilistic Ap- proach[J]. IEEE Transactions on Power Systems, 1997, 12 (1): 45-51. 被引量:1
  • 7HEUNIS S W, HERMAN R. A Probabilistic Model for Resi- dential Consumer Loads[J]. IEEE Transactions on Power Sys- tems, 2002, 17(3): 621-625. 被引量:1
  • 8李碧君,薛禹胜,顾锦汶,韩祯祥.状态估计中选取量测权值的新原则[J].电力系统自动化,2000,24(8):10-14. 被引量:9
  • 9REYNOLDS D. Gaussian Mixture Models[J]. Encyclopedia of Biometrics, 2008, 3(4): 93-105. 被引量:1
  • 10MOON T K. The Expectation-maximization Algorithm[J]. Signal Processing Magazine, IEEE, 1996, 13(6): 47-60. 被引量:1

二级参考文献7

共引文献8

同被引文献99

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部