摘要
In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.
In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.
基金
This project,No.2011ZA05,is supported by the State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou,China