期刊文献+

基于超声射频流的RF时间序列信号在乳腺病变良恶性鉴别中的价值 被引量:8

Differential diagnosis of breast lesions with RF time-series signal based on ultrasonic radio-frequency flow
原文传递
导出
摘要 目的探讨基于超声射频流的原始射频(RF)时间序列信号定量分析在乳腺良恶性病变鉴别诊断中的应用。方法采用加拿大Ultrasonix Sonix TOUCH超声检查仪,L14-5线阵探头,对137个乳腺病灶最大横切面连续存储10 s二维图像射频RF信号。采用自编的RF时间序列信号分析软件对病灶组织感兴趣区(ROI)进行定量分析,得到9个谱特征参数,即尺寸测量关系(size measure relationship,SMR)分形维数、Higuchi分形维数、谱斜率(Slope)、谱截距(Intercept)、中频(Mid-band fit)和S1,S2,S3,S4。经手术或穿刺活检病理证实86个病灶为恶性,30个病灶为良性,21个病灶经随访2年以上无明显变化确诊为良性。结果基于超声射频流的RF时间序列信号的特征参数SMR分形维数、Higuchi分形维数、谱斜率(Slope)、谱截距(Intercept)、中频(Mid-band fit)和S1,S2,S3,S4,在良性病灶中均低于恶性病灶,差异具有统计学意义(0.75±0.77 vs 0.82±0.10,t=-4.722,1.31±0.07 vs 1.42±0.10,t=-7.476,-0.24±0.04 vs-0.26±0.06,t=1.986,0.19±0.03 vs0.21±0.048,t=-3.391,0.067±0.011 vs 0.08±0.019,t=-5.319,3.22±0.54 vs 3.60±0.83,t=-3.298,0.53±0.12 vs 0.73±0.23,t=-6.467,0.31±0.06 vs 0.45±0.13,t=-9.207,0.24±0.05 vs 0.38±0.12,t=-9.367,P值均<0.05)。结论基于超声射频流的RF时间序列信号定量分析有望成为乳腺疾病鉴别诊断简单、无创的影像学新方法。 Objective To evaluate the values of RF time-series signal based on ultrasonic radio-frequency flow in the differentiation of benign and malignant breast lesions. Methods A commercially available clinical ultrasound scanner, Sonix TOUCH(Ultrasonix Medical Corporation, Richmond, Canada) with a L14–5 linear ultrasound transducer was used to simultaneously collect B-mode images and RF data from breast lesions. The ultrasound probe displaying the maximal plane of the breast lesion was kept in the same position for 10 seconds. The ultrasound RF data from region of interest was imported into software developed by our lab for ultrasound spectral analysis and 9 spectral parameters including SMR fractal dimension, Higuchi fractal dimension, Slope, Intercept, Mid-band fit, S1, S2, S3, S4 were calculated. 137 patients with 137 breast lesions confirmed by pathological or follow-up findings were included in the study. Of the 137 breast lesions, 86 malignant and 30 benign lesions were confirmed by ultrasound guided core needle biopsy or surgical excision, and the rest 21 lesions were presumed benign as no significant change was found after at least 2 years of follow-up. Results There are significantly difference in spectral parameters including SMR fractal dimension, Higuchi fractal dimension, Slope, Intercept, Mid-band fit, S1, S2, S3 and S4 between the malignant and benign breast lesions(0.75±0.77 vs 0.82±0.10, t=-4.722, 1.31±0.07 vs 1.42±0.10, t=-7.476,-0.24±0.04 vs-0.26±0.06, t=1.986, 0.19±0.03 vs 0.21±0.048, t=-3.391, 0.067±0.011 vs 0.08±0.019, t=-5.319, 3.22±0.54 vs 3.60±0.83, t=-3.298, 0.53±0.12 vs 0.73±0.23, t=-6.467, 0.31±0.06 vs 0.45±0.13, t=-9.207, 0.24±0.05 vs 0.38±0.12, t=-9.367, all P〈0.05). Conclusion RF time-series signal based on ultrasonic radio-frequency flow could provide a new imaging method with a simple, low-cost noninvasive technique for the differential diagnosis of the benign and malignant breast lesions.
出处 《中华医学超声杂志(电子版)》 CSCD 2016年第5期393-397,共5页 Chinese Journal of Medical Ultrasound(Electronic Edition)
基金 国家自然科学基金面上项目(81271578)
关键词 乳腺肿瘤 超声检查 诊断 鉴别 Breast neoplasms Ultrasonography Diagnosis differential
  • 相关文献

参考文献18

  • 1Can G, Shi P, Hu B. Ultrasonic liver discrimination using 2-D phase congruency [J]. IEEE Trans B iomed Eng, 2006, 53(10): 2116-2119. 被引量:1
  • 2Toyoda H, Kumada T, Kamiyama N, et al. B-mode ultrasound with algorithm based on statistical analysis of signals:evaluation of liver fibrosis in patients with chronic hepatitis C [J]. Am J Roentgenol, 2009, 193(4): 1037-1043. 被引量:1
  • 3高永振,林春漪,陈秋彬,周建华.基于超声射频时间序列的肝纤维化程度评分方法[J].生物医学工程学杂志,2015,32(1):175-180. 被引量:3
  • 4Moradi M, Mousavi P, Boag AH, et al. Augmenting detection of prostate cancer in transrectal ultrasound images using SVM and RF time series [J]. IEEE Trans Biomed Eng, 2009, 56(9): 2214-2224. 被引量:1
  • 5Uniyal N, Eskandari H, Abolmaesumi P, et al. Ultrasound RF time series for classification of breast lesions [J]. IEEE Trans Med Imaging, 2015, 34(2): 652-661. 被引量:1
  • 6徐光炜,胡永昇,阚秀.中国10万妇女乳腺癌筛查初探[J].中国肿瘤,2010,19(9):565-568. 被引量:64
  • 7Liu T, Lizzi FL, Silverman RH, et al. Ultrasonic tissue characterization using 2-D spectrum analysis and its application in ocular tumor diagnosis [J]. Med Phys, 2004, 31 (5): 1032-1039. 被引量:1
  • 8Moradi M, Mousavi P, Siemens DR, et al. Discrete Fourier analysis of ultrasound RF time series for detection of prostate cancer [J]. Conf Proc IEEE Eng Med Biol Soc, 2007, 2007(29): 1339-1342. 被引量:1
  • 9Lizzi FL, Greenebaum M, Feleppa EJ, et al. Theoretical framework for spectrum analysis in ultrasonic tissue characterization [J]. J Acoust SocAm, 1983, 73(4): 1366-1373. 被引量:1
  • 10Sadeghi-Naini A, Sannaehi L, Pritchard K, et al. Early prediction of therapy responses and outcomes in breast cancer patients using quantitative ultrasound spectral texture [J]. Oncotarget, 2014, 5(11): 3497-3511. 被引量:1

二级参考文献40

  • 1张思维,雷正龙,李光琳,邹小农,陈万青,赵平.中国肿瘤登记地区2005年发病死亡资料分析[J].中国肿瘤,2009,18(12):973-979. 被引量:32
  • 2杨娜,冯蕾.肝纤维化早期诊断的研究进展[J].昆明医科大学学报,2012,33(S1):236-243. 被引量:11
  • 3Buchberger W, Dekoekkoek-Doll P, Springer P, et al. Incidental findings on sonography of the breast [J]. Am J Roentgenol, 1999, 173:921-927. 被引量:1
  • 4Stavros AT, Thickman D, Rapp CL, et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions [J]. Radiology, 1995, 196(1):123-134. 被引量:1
  • 5MANNING D S,AFDHAL N H.Diagnosis and quantitation of fibrosis[J].Gastroenterology,2008,134(6):1670-1681. 被引量:1
  • 6ZHOU G H,WANG Y Y,WANG W Q.Diagnosis of hepatic fibrosis by ultrasonic image analysis[C]//2012 International Conference on Biomedical Engineering and Biotechnology(iCBEB).Macao:2012:775-776. 被引量:1
  • 7CAO G T,SHI P F,HU B.Ultrasonic liver discrimination using 2-D phase congruency[J].IEEE Trans Biomed Eng,2006,53(10):2116-2119. 被引量:1
  • 8BASSET O,DUBOEUF F,DELHAY S,et al.Texture a-nalysis of ultrasound liver images with contrast agent to characterize the fibrosis stage[C]//IEEE Ultrasonics Symposium,2008.Beijing:2008:24-27. 被引量:1
  • 9TOYODA H,KUMADA T,KAMIYAMA N,et al.Brnode ultrasound with algorithm based on statistical analysis of signals:e-valuation of liver fibrosis in patients with chronic hepatitis C[J].Am J Roentgenol,2009,193(4):1037-1043. 被引量:1
  • 10LIZZI F,FELEPPA E,JAREMKO N.Liver-tissue characterization by digital spectrum and cepstrum analysis[C]//1981 Ultrasonics Symposium.Chicago,IL,USA:1981:575-578. 被引量:1

共引文献72

同被引文献105

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部