摘要
为在光纤孤子的应用装置中讨论孤子稳定性和相互作用,数值研究了变系数耦合非线性薛定谔方程组.结果表明:微孤子相互作用存在于具有周期分布的色散和非线性参量的PT对称非线性耦合器中.在不同初始条件下,包括同相输入的两个或三个等幅孤子、含反相二孤子输入的三孤子,都存在这样的微孤子相互作用.讨论了有限初始扰动下微孤子相互作用的稳定性,结果表明有限初始扰动不会影响微孤子相互作用的主要特征。
In order to discuss the stability and interaction of optical fiber solitons in application devices,linearly coupled nonlinear Schrodinger(NLS) equations with variable coefficients are investigated numerically.Results show that the weak soliton interaction exists in PT-symmetric nonlinear coupler with periodically distributed dispersion and nonlinear parameters.There exists weak soliton interaction under different initial conditions,including two or three non-inverting input solitons with equal amplitude and three solitons with two inverting input solitons.Stability of the weak soliton interaction is discussed with finite initial perturbation.Results show that the main characteristics of weak soliton interaction can not be influenced by the finite initial perturbation.
出处
《量子电子学报》
CAS
CSCD
北大核心
2016年第3期338-342,共5页
Chinese Journal of Quantum Electronics
基金
长治学院光学优秀教学团队项目和博士科研经费资助~~
关键词
非线性光学
分布式PT对称耦合器
数值模拟
微孤子相互作用
nonlinear optics
distributed PT-symmetric couplers
numerical simulation
weak soliton interaction