期刊文献+

一种合成孔径声纳图像线目标提取方法 被引量:2

A line target extraction method of synthetic aperture sonar image
下载PDF
导出
摘要 本文研究了针对高分辨率合成孔径声纳图像中常见的管道、线缆等重要水下设施的线目标提取方法。基于图割理论的Grab Cut算法相比其他迭代算法具有较快的收敛速度,但需要人工辅助选定前/背景区域的初始化条件;为此,本文设计了基于尺度放缩后进行Radon变换的感兴趣区域提取环节,作为Grab Cut的初始化步骤解决方案,使之可以快速自动解译;此外,该优化方案还缩小了模型训练的样本容量,提升了直线目标的提取精度和效率。经实验验证,该方法可以快速准确地提取直线目标,且具有相对较强的鲁棒性。 In this paper, a line target extraction method of underwater cables and pipes in synthetic aperture sonar (SAS) image has been discussed. The relatively novel method, Grab Cut, which is usually known for high convergence rate, requests an extra artificial aid to label the original area of foreground and background to initialize the algorithm. In case of that, a line region of interests (ROI) marking procedure based on Radon transform of resized image is proposed in this paper as a solution to the initialization of Grab Cut, which makes it possible for sonar images to be fast and automatically interpreted, Furthermore, the optimization also results in reduction of samples required by model training and increase of detection accuracy and efficiency. Finally, it is demonstrated in series of experiments on sonar images that the method is able to extract line targets fast and accurately, and is also relatively robust.
出处 《应用声学》 CSCD 北大核心 2016年第3期265-271,共7页 Journal of Applied Acoustics
基金 国家自然科学基金项目(11204343) 中科院声学所青年人才领域前沿项目(Y454311211)
关键词 合成孔径声纳 图像分割 RADON变换 GRAB CUT Synthetic aperture sonar, Image segmentation, Radon transform, Grab Cut
  • 相关文献

参考文献13

  • 1KASS M, WITKIN A, TERZOPOULOS D. Snakes: ac- tive contour models[C]. IEEE International Conference on Computer Vision, 1987: 259-268. 被引量:1
  • 2许文海,续元君,董丽丽,李瑛.基于水平集和支持向量机的图像声呐目标识别[J].仪器仪表学报,2012,33(1):49-55. 被引量:20
  • 3MYERS V, WILLIAMS D P. Adaptive multiview tar- get classification in synthetic aperture sonar images using a partially observable Markov decision process[J]. IEEE Journal Oceanic Engineering, 2012, 37(1): 45-55. 被引量:1
  • 4BRYNER D, SRIVASTAVA A. Shadow segmentation in SAS and SAR using Bayesian elastic contours[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013:375 380. 被引量:1
  • 5赵莉丽..基于局部水平集和非局部MRF的SAR图像分割方法[D].西南交通大学,2014:
  • 6ROTHER C, KOLMOGOROV V, BLAKE A. Grab Cut: interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314. 被引量:1
  • 7张东萍..改进Grabcut算法在无人机影像船只识别中的应用与研究[D].天津大学,2013:
  • 8BOYKOV Y, JOLLY M P. Interactive graph cuts for opti- mal boundary and region segmentation of objects in N-D images[C]. IEEE International Conference on Computer Vision. 2001. 被引量:1
  • 9陈华杰,吴香伟,薛安克.一种基于Graph Cuts的SAR图像分割方法[J].光电工程,2010,37(5):104-109. 被引量:2
  • 10Max-Flow Min-Cut Theorem[EB/OL]. [2015-07-12]. https //en.wikipedia.org/wiki/Max-flow min-cut theorem. 被引量:1

二级参考文献24

  • 1陈波,杨阳,沈田双.一种基于不变矩和SVM的图像目标识别方法[J].仪器仪表学报,2006,27(z3):2093-2094. 被引量:11
  • 2梁晓云,章品正,王蔚林,曾卫明,罗立民,王立功,周正东.Hausdorff距离与GA相结合的医学图像配准[J].仪器仪表学报,2004,25(z1):535-537. 被引量:2
  • 3夏桂松,何楚,孙洪.一种基于非参数密度估计和马尔可夫上下文的SAR图像分割算法[J].电子与信息学报,2006,28(12):2209-2213. 被引量:2
  • 4焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008. 被引量:30
  • 5Roger Fjortoft,Yves Delignon,Wojciech Pieczynski,et al.Unsupervised Classification of Radar Images Using Hidden Markov Chains and Hidden Markov Random Fields[J].IEEE Transaction on Geoscience and Remote Sensing(S0196-2892),2003,41(3):675-686. 被引量:1
  • 6Richard Szeliski,Ramin Zabin,Daniel Scharstein,et al.A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),2008,30(6):1068-1080. 被引量:1
  • 7Yuri Boykov,Olga Veksler,Ramin Zabih.Fast Approximate Energy Minimization via Graph Cuts[J].IEEE Transactions onPattern Analysis and Machine Intelligence(SOl62-8828),2001,23(11):1222-1239. 被引量:1
  • 8Yuri Boykov,Vladimir Kolmogorov.An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision[J].IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2004,26(9):1124-1137. 被引量:1
  • 9FORESTI G L, GENTILI S. A vision based system for object detection in underwater images [ J ]. International Journal of Pattern Recognition and Artificial Intelligence, 2001,14(2) :167-188. 被引量:1
  • 10Vlqq'ORIO M, ANDREA T. Confidence-based approach to enhancing underwater acoustic image formation [ J ]. IEEE Trans on Image Proeessing, 1999,82 (2) :270-285. 被引量:1

共引文献53

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部