期刊文献+

一类三维分段线性系统的异宿轨的存在性 被引量:2

Existence of Heteroclinic Orbits for Three-dimensional Piecewise Linear Systems
下载PDF
导出
摘要 研究一类具有3个参数的连续分段线性微分动力系统的异宿轨的存在性.利用光滑子系统的流建立切换流形上的Poincare映射,并结合Taylor展开等方法,证明系统在一定参数条件下存在简单二维异宿轨. The existence of heteroclinic orbits for a three-parametric family of continuous piecewise linear systems is studied. Using Poincare maps established by the flow of smooth subsystems on switch manifold,and combining with Taylor series expansion method,the existence of a simple 2-dimensional heteroclinic orbit under certain parametric conditions is proved.
作者 朱道宇
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期377-381,共5页 Journal of Sichuan Normal University(Natural Science)
基金 贵州省科技厅联合基金(黔科合LH字[2014]7377)
关键词 异宿轨 POINCARE映射 平衡点 流形 Heteroclinic orbit Poincare map equilibrium manifold
  • 相关文献

参考文献17

  • 1BEMARDOM, BUDD C J,CHAMPNEYS A R, et al. Piecewise - smooth Dynamical Systems:Theory and Application[M]. ApplMath Sci Series, 163. Berlin: Springer - Verlag,2008. 被引量:1
  • 2AMEODO A, COULLET P,TRESSER C. Possible new strange attractors with spiral structure[ J]. Commun Math Phys, 1981,79(4):573 -579. 被引量:1
  • 3ARNEODO A, COULLET P,TRESSER C. Oscillators with chaotic behavior:an illustration of a theorem by Shilnikov[ J] . J StatPhys,1982,27(1) :171 -182. 被引量:1
  • 4SIMPSON D J W, MEISS J D. Andronov - Hopf bifurcations in planar piecewise - smooth continuous flows[ J]. Phys Lett,2007,A371(3):213 -220. 被引量:1
  • 5FREIRE E,PONCE E,RODRIGO F, et al. Bifurcation sets of symmetrical continuous piecewise linear systems with threezones [ J ] . Intemat J Bifur Chaos Appl Sci Engrg, 2002,12(8) :1675 - 1702. 被引量:1
  • 6CARMONA V,FREIRE E, PONCE E, et al. On simplifying and classifying piecewise linear systems[ J]. IEEE Trans CircuitsSystems I: Fund Theory Appl,2002,49(5) :609 -620. 被引量:1
  • 7SHILNIKOV L P. A case of the existence of a countable number of periodic motions[ J]. Sov Math Dokl,1965,6:163 - 166. 被引量:1
  • 8SILVA C P. Shilnikov theorem - a tutorial[ J]. IEEE Trans Circuits Syst, 1993,40( 10) :675 -682. 被引量:1
  • 9VITALY V,BOGDAN K. Existence of heteroclinic orbits for systems satisfying monotonicity conditions[ J]. Nonlinear Anal,2003,55(4):467 - 491. 被引量:1
  • 10MEES A I,CHAPMAN P B. Homoclinic and heteroclinic orbits in the double scroll attractor[ J]. IEEE Trans Circuits Syst,1987,34(9) :1115-1120. 被引量:1

二级参考文献36

共引文献4

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部