期刊文献+

Vanishing of Tate Homology - An Application of Stable Homology for Complexes

Vanishing of Tate Homology — An Application of Stable Homology for Complexes
原文传递
导出
摘要 It has been proved that the vanishing of Tare homology is a sufficient condition for the derived depth formula to hold in [J. Pure Appl. Algebra, 219, 464-481 (2015)]. In this paper, we inves- tigate when Tate homology vanishes by studying the stable homology theory for complexes. Properties such as the balancedness and vanishing of stable homology for complexes are studied. Our results show that the vanishing of this homology can detect finiteness of homological dimensions of complexes and regularness of rings. It has been proved that the vanishing of Tare homology is a sufficient condition for the derived depth formula to hold in [J. Pure Appl. Algebra, 219, 464-481 (2015)]. In this paper, we inves- tigate when Tate homology vanishes by studying the stable homology theory for complexes. Properties such as the balancedness and vanishing of stable homology for complexes are studied. Our results show that the vanishing of this homology can detect finiteness of homological dimensions of complexes and regularness of rings.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期831-844,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11261050,11361051 and 11501451) Program for New Century Excellent Talents in University(Grant No.NCET-13-0957)
关键词 Tate homology stable homology complete projective resolution Tate homology, stable homology, complete projective resolution
  • 相关文献

参考文献27

  • 1Araya, T., Yoshino, Y.: Remarks on a depth formula, a grade inequality and a conjecture of Auslander. Comm. Algebra, 26, 3793-3806 (1998). 被引量:1
  • 2Asadollahi, J., Salarian, S.: Gorenstein injective dimension for complexes and Iwanaga-Gorenstein rings. Comm. Algebra, 34, 3009-3022 (2006). 被引量:1
  • 3Asadollahi, J., Salarian, S.: Cohomology theories for complexes. J. Pure Appl. Algebra, 210, 771-787 (2007). 被引量:1
  • 4Auslander, M.: Modules over unramified regular local rings. Ill. J. Math., 5, 631-647 (1961). 被引量:1
  • 5Avramov, L. L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra, 71, 129-155 (1991). 被引量:1
  • 6Avramov, L. L., Martsinkovsky, A.: Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension. Proc. London Math. Soc., 85, 393-440 (2002). 被引量:1
  • 7Avramov, L. L., Veliche, O.: Stable cohomology over local rings. Adv. Math., 213, 93-139 (2007). 被引量:1
  • 8Cartan, H., Eilenberg, S.: Homological Algebra, Princeton Univ. Press, Princeton, N J, 1956. 被引量:1
  • 9Celikbas, O., Christensen, L. W., Liang, L. et al.: Stable homology over associative rings. Trans. Amer. Math. Soc., accepted, arXiv:1409.3605v2 [math.RA]. 被引量:1
  • 10Christensen, L. W.: Gorenstein Dimension, Lecture Notes in Mathematics, 1747, Springer-Vertag, Berlin, 2000. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部