期刊文献+

SOLUTIONS AND STABILITY OF A GENERALIZATION OF WILSON'S EQUATION

SOLUTIONS AND STABILITY OF A GENERALIZATION OF WILSON'S EQUATION
下载PDF
导出
摘要 In this paper we study the solutions and stability of the generalized Wilson's functional equation fc f(xty)dtt(t) + fc f(xtσ(y))dtt(t) =2f(x)g(y), x,y C G, where G is a locally compact group, a is a continuous involution of G and # is an idempotent complex measure with compact support and which is a-invariant. We show that ∫Gg(xty)dp(t) + fcg(xta(y))dp(t) = 2g(x)g(y) if f = 0 and fcf(t.)dp(t) =0, where [fcf(t.)dp(t)](x) = fc f(tx)dμ(t). We also study some stability theorems of that equation and we establish the stability on noncommutative groups of the classical Wilson's functional equation f(xy) + X(y)f(xa(y)) = 2f(x)g(y) x, y C G, where X is a unitary character of G. In this paper we study the solutions and stability of the generalized Wilson's functional equation fc f(xty)dtt(t) + fc f(xtσ(y))dtt(t) =2f(x)g(y), x,y C G, where G is a locally compact group, a is a continuous involution of G and # is an idempotent complex measure with compact support and which is a-invariant. We show that ∫Gg(xty)dp(t) + fcg(xta(y))dp(t) = 2g(x)g(y) if f = 0 and fcf(t.)dp(t) =0, where [fcf(t.)dp(t)](x) = fc f(tx)dμ(t). We also study some stability theorems of that equation and we establish the stability on noncommutative groups of the classical Wilson's functional equation f(xy) + X(y)f(xa(y)) = 2f(x)g(y) x, y C G, where X is a unitary character of G.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2016年第3期791-801,共11页 数学物理学报(B辑英文版)
关键词 d'Alembert's functional equation locally compact group INVOLUTION CHARACTER complex measure Wilson's functional equation Hyers-Ulam stability d'Alembert's functional equation locally compact group involution character complex measure Wilson's functional equation Hyers-Ulam stability
  • 相关文献

参考文献34

  • 1Badora R. On the stability of cosine functional equation. Wyzszkola Red Krakow Rocz Nauk-Dydakt Pr Mat, 1998, 15:1-14. 被引量:1
  • 2Badora R. On the stability of a functional equation for generalized trigonometric functions//Rassias Th M, ed. Functional Equations and Inequalities. Kluwer Academic Publishers, 2000:1-5. 被引量:1
  • 3Badora R. Note on the superstability of the Cauchy functional equation. Pub Math Debrecen, 2000, 57(3/4): 421-424. 被引量:1
  • 4Baker J A. The stability of the cosine equation. Proc Amer Math Soc, 1980, 80:411-416. 被引量:1
  • 5Baker J A, Lawrence J, Zorzitto F. The stability of the equation f(x q- y) = f(x)f(y). Proc Amer Math Soc, 1979, 74:242- 246. 被引量:1
  • 6Bouikhalene B, Elqorachi E, Rassias J M. The superstability of d'Alembert's functional equation on the Heisenberg group. Appl Math Lett, 2010,23(1): 105-109. 被引量:1
  • 7Bouikhalene B, Elqorachi E. Stability of a generalization Wilson's equation. Aequat Math, 2015, DOh 10-1007/s00010-015-0356-0. 被引量:1
  • 8Bouikhalene B, Elqorachi E. Stability of the spherical functions. Georgian Math J, (to appears). 被引量:1
  • 9D'Alembert, Jean Le Round. Addition au Mmoire sur la courbe que forme une corde tendue raise en vibration. Hist Acad Berlin, 1750:355-360. 被引量:1
  • 10Davison T M K. D'Alembert's functional equation on topological groups. Aequat Math, 2008, 76:33-53. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部