期刊文献+

低温储存期间原料乳微生物预测模型建立 被引量:7

Establishment of predicting model for raw milk at low temperature storage
下载PDF
导出
摘要 本研究对秋季低温储存原料乳进行预测微生物学研究。使用Gompertz模型建立4~14℃储存的秋季原料乳中总菌落和嗜冷菌的生长动力模型。模型可以有效的模拟秋季原料乳中微生物的生长情况,模型的相关系数均大于0.972,可以用来预测微生物生长情况和达到控制下限的时间。研究表明嗜冷菌是低温储存的原料乳中优势微生物,在4~8℃储存温度下总菌落数与嗜冷菌的数量呈很好的相关性(R^2=0.931),可以通过总菌数推算出嗜冷菌的数量,保证乳制品的品质。 To predict the microbiological analysis of raw milk stored at low temperature in autumn.The Gompertz model was used to establish the growth kinetic model of total colony and psychrophilic in raw milk in the autumn raw milk stored in 4-14 ℃.The model could effectively simulate the growth of microorganisms in raw milk in autumn,and the correlation coefficient of the model was higher than 0.972, which could be used to predict the growth of microorganisms and the time to reach the control limit.The study showed that psychrophile was the main microorganism among raw milk stored at low temperature. It was good while the store temperature was between 4-8 ℃( R2 =0.931).The number of the bacteria could be calculated by the total number of bacteria,which could ensure the quality of dairy products.
出处 《食品工业科技》 CAS CSCD 北大核心 2016年第11期122-125,共4页 Science and Technology of Food Industry
基金 国家支撑计划课题(2012BAD12B05)
关键词 原料乳 低温储存 预测微生物 raw milk low temperature storage prediction microbiology
  • 相关文献

参考文献21

  • 1Ingram M. Psychrophilic and psychrotrophic microorganisms [ J ] .Annals institute Pasteur Lille, 1965,16 : 111 - 118. 被引量:1
  • 2Morita R Y.Psychropphilic bacteria[ J ] .Bacteriology Reviews, 1975,39 (2) : 144-167. 被引量:1
  • 3Niza- Ribeiro J, Louza A C, Santos P, et al. Monitoring the microbiological quality of raw milk through the use of an ATF bioluminescence method [ J ] . Food Control, 2000, 11 ( 3 ) : 209-216. 被引量:1
  • 4IDF Standardl01A. Milk enumeration of psychrotrophic microorganismscolony count technique at 6.5℃[ S]. [5]. 被引量:1
  • 5IDF Standard132A. Estimation of numbers of psychrotrophic microorganisms(rapid colony count technique,25 hours at 21℃) [S]. 被引量:1
  • 6Mcmeekin T A, Ross T. Predictive microbiology : providing a knowledge- based framework for change management [ J ]. International Journal of Food Microbiology, 2002,78 ( s 1 - 2 ) : 133-153. 被引量:1
  • 7Mcmeekin T A, Olley J, Ratkowsky D A, et al. Predictive microbiology : towards the interface and beyond [ J ]. International Journal of Food Microbiology,2002,73 (s 2-3 ) :395-407. 被引量:1
  • 8Memeekin T A. Predictive mierobiology : Quantitative science delivering quantifiable benefits to the meat industry and other food industries. [ J] .Meat Science ,2007,77 ( 1 ) : 17-27. 被引量:1
  • 9Brnl S, Mensonides F I C, Hellingwerf K J, et al. Microbial systems biology: New frontiers open to predietive mierobiology [ J]. International Journal of Food Microbiology, 2008,128 ( 1 ) : 16-21. 被引量:1
  • 10Mcmeekin T, Bowman J, Mequestin O, et al. The future of predictive microbiology : Strategic research, innovative applications and great expectations [ J ]. International Journal of Food Microbiology ,2008,128 ( 1 ) :2-9. 被引量:1

共引文献43

同被引文献86

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部