期刊文献+

基于PSO-RBF混合算法锂离子电池SOC估算 被引量:4

A hybrid algorithm of SOC estimation for lithium-ion battery based on PSO-RBF
下载PDF
导出
摘要 为提高锂离子电池荷电状态的预测精度,将粒子群算法引入到径向基神经网络中,建立锂离子电池荷电状态混合估算算法。采用粒子群算法对径向基神经网络隐层节点中心和宽度及连接权值进行优化,降低径向基神经网络参数取值的繁杂度,提高荷电状态预测精度。利用Arbin BT2000多功能蓄电池测试平台,获取到锂离子电池放电数据,进行模拟训练和预测。实验表明:混合算法相对RBF网络具有更好的预测能力,满足荷电状态估算精度误差小于5%的要求,验证了该模型是有效、可行的。 To improve the prediction accuracy of state of charge(SOC) for the lithium-ion battery, a hybrid algorithm for SOC, which introduced particle swarm optimization(PSO) algorithm into the radial basis function neural network,was proposed. PSO was adopted to optimize the nodes center, the width and the connection weights of the hidden layer, and decreased the complexity of the parameter selection in RBF neural network, and then the accuracy of SOC estimation was improved. The lithium-ion battery discharging data, used to simulate train and predict SOC,came from Arbin BT2000 multi-function battery test platform. The experiment shows that the hybrid algorithm,compared with the RBF network, has the better prediction ability, and satisfies the basic requirement that the error of the accuracy of SOC estimation should be less than 5%, which verifies the model is effective and feasible.
出处 《电源技术》 CAS CSCD 北大核心 2016年第5期982-985,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金资助项目(51247004) 湖北工业大学2012年博士启动基金项目(BSQD12018)
关键词 锂离子电池 粒子群算法 径向基神经网络 荷电状态 权值优化 lithium-ion battery particle swarm optimization algorithm radial basis function neural network state of charge connecting weight optimizing
  • 相关文献

参考文献15

  • 1LIN C H, HSIEH C Y, CHEN K H. A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging [J].IEEE Trans Circuits Syst I, 2010, 57(2):506-517. 被引量:1
  • 2SHEIKHAN M, PARDIS R, GHARAVIAN D. State of charge neu- ral computational models for high energy density batteries in elec- tric vehicles [J]. Neural Computing and Applications, 2012, 22(6): 1171-1180. 被引量:1
  • 3朱训林,岳东.网络化神经网络的时滞依赖稳定性判据(英文)[J].控制理论与应用,2012,29(9):1169-1175. 被引量:1
  • 4LIU Z, WANG Y, DU J, et al. RBF network-aided adaptive un- scented Kalman filter for lithium-ion battery SOC estimation in electric vehicles [J]. IEEE Transactions on Industrial Electronics, 2011, 12(9):1673-1677. 被引量:1
  • 5KIM T, QIAO W, QU L. Real-time state of charge and electrical impedance estimation for lithium-ion batteries based on a hybrid battery model [J]. IEEE Transactions on Industrial Electronics, 2013, 13(8):563-568. 被引量:1
  • 6STAIANO A, TAGLIAFERRI R, PEDRYCZ W. Improving RBF networks perfornmnce in regression tasks by means of a supervised fuzzy clustering[J]. Neurocomutine, 2006.69(8/: 1570-1581. 被引量:1
  • 7张天平,施枭铖,沈启坤,鲁瑶.具有未建模动态的自适应神经网络动态面控制[J].控制理论与应用,2013,30(4):475-481. 被引量:17
  • 8CHANG W f Estimation of the stateof clarge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA [J]. International Journal of Electrical Power & Energy Systems, 2013, 53(12):603-611. 被引量:1
  • 9GAN M, PENG H, DONG X P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction [J]. Applied Mathematical Modelling, 2012, 36(7):2911- 2919. 被引量:1
  • 10HASHEMI A B,MEYBODI M R. A note on the learning automata based algorithms for adaptive parameter selection in PSO [J].Ap- plied Soft Computing Journal, 2011, 11(1): 689-705. 被引量:1

二级参考文献70

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:168
  • 2李红春,张天平,孙妍.基于动态面控制的间接自适应神经网络块控制[J].电机与控制学报,2007,11(3):275-281. 被引量:7
  • 3中国电力科学研究院.电动汽车有序充电控制方法及系统:中国,CN102055217A[P].2011-05-11. 被引量:3
  • 4XU S, LAM J, HOD W C. A new LMI condition for delay dependent asymptotic stability of delayed Hopfield neural networks [J]. IEEE Transactions on Circuits and Systems 1I: Express Briefs, 2006, 53(3): 230 - 234. 被引量:1
  • 5WANG Z, LIU Y, LI M, et al. Stability analysis for stochastic Cohen- Grossberg neural networks with mixed time delays [J]. IEEE Trans- actions on Neural Networks, 2006, 17(3): 814 - 820. 被引量:1
  • 6PARK J H. Robust stability of bidirectional associative memory neu- ral networks with time delays [J]. Physics Letters A, 2006, 349(6): 494 - 499. 被引量:1
  • 7LIAO X F, CHEN G, SANCHEZ E N. Delay-dependent exponential stability analysis of delayed neural networks: An LMI approach [J]. Neural Networks, 2002, 15(7): 855 - 866. 被引量:1
  • 8XU S, LAM J, HOD W C, et al. Novel global asymptotic stability criteria for delayed cellular neural networks [J]. IEEE Transactions on Circuits and Systems H: Express Briefs, 2005, 52(6): 349 - 353. 被引量:1
  • 9HUA C C, LONG C N, GUAN X E New results on stability analysis of neural networks with time-varying delays [J]. Physics Letters A, 2006, 352(4/5): 335 - 340. 被引量:1
  • 10SINGH V, Global robust stability of delayed neural networks: An LMI approach [J]. 1EEE Transactions on Circuits and Systems 11: Express Briefs, 2005, 52(1): 33 - 36. 被引量:1

共引文献39

同被引文献23

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部