期刊文献+

Vegetation changes in the agricultural-pastoral areas of northern China from 2001 to 2013 被引量:6

Vegetation changes in the agricultural-pastoral areas of northern China from 2001 to 2013
下载PDF
导出
摘要 Climate change and human activity have resulted in increasing change of vegetation growth globally. Numerous studies have been conducted on extreme climate events and analyses of ecological environment evolution. However, such studies have placed little emphasis on vegetation change and spatial variation in this type of ecotone. Accordingly, this study analyzed the changes in vegetation type and growth using the 16-d composite MOD13A1 product with 1-km resolution and MOD12Q1 product with 1-km resolution. We used the mean, maximum, standard deviation normalized-difference vegetation index(NDVI) values, and the rate of change(ROC) of NDVI value to explain vegetation changes within the studied ecotone. Our results showed that significant vegetation type and growth changes have occurred in the study area. From 2001 to 2013, for example, with the exception of 2001, 2004 and 2009, a certain extent of grassland area was converted to cropland. Drought severity index(DSI) results indicate that there exists drought in 2001, 2004 and 2009. Such temporal changes in cropland and grassland area confirmed the ecological vulnerability of the ecotone. At the same time, vegetation varied spatially from west to east and from south to north. The mean, maximum and standard deviation NDVI values were all sorted in descending order based on differences in latitude and longitude, as follows: NDVI_(2013)〉NDVI_(2009)〉NDVI_(2004)〉NDVI_(2001) Climate change and human activity have resulted in increasing change of vegetation growth globally. Numerous studies have been conducted on extreme climate events and analyses of ecological environment evolution. However, such studies have placed little emphasis on vegetation change and spatial variation in this type of ecotone. Accordingly, this study analyzed the changes in vegetation type and growth using the 16-d composite MOD13A1 product with 1-km resolution and MOD12Q1 product with 1-km resolution. We used the mean, maximum, standard deviation normalized-difference vegetation index(NDVI) values, and the rate of change(ROC) of NDVI value to explain vegetation changes within the studied ecotone. Our results showed that significant vegetation type and growth changes have occurred in the study area. From 2001 to 2013, for example, with the exception of 2001, 2004 and 2009, a certain extent of grassland area was converted to cropland. Drought severity index(DSI) results indicate that there exists drought in 2001, 2004 and 2009. Such temporal changes in cropland and grassland area confirmed the ecological vulnerability of the ecotone. At the same time, vegetation varied spatially from west to east and from south to north. The mean, maximum and standard deviation NDVI values were all sorted in descending order based on differences in latitude and longitude, as follows: NDVI_(2013)〉NDVI_(2009)〉NDVI_(2004)〉NDVI_(2001)
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1145-1156,共12页 农业科学学报(英文版)
基金 funded by the National Basic Research Program of China (973 Program, 2014CB954301) the Project of the State Key Laboratory of Earth Surface Processes and Resources Ecology, Beijing Normal University, China (2013-KF-11) the Project of Ministry of Environmental Protection of China (257228006)
关键词 vegetation growth agricultural-pastoral area MODIS land cover change temporal change spatial variation vegetation growth, agricultural-pastoral area, MODIS, land cover change, temporal change, spatial variation
  • 相关文献

参考文献5

二级参考文献75

共引文献460

同被引文献67

引证文献6

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部