期刊文献+

基于光流模值变化频率的群体骚乱行为检测方法 被引量:2

Detection Method for Group Riot Activity Based on Change Frequency of Optical Flow's Magnitude
下载PDF
导出
摘要 群体骚乱行为突发性强、破坏性大,是视频监控关注的重点。研究群体骚乱行为的智能检测方法有助于提高视频监控的智能化水平。现有行为检测方法在检测群体骚乱行为时虚警率较高,实用性较差。因此,依据群体骚乱行为发生时光流模值变化大的特性,提出了一种基于光流模值变化频率的群体骚乱行为检测方法。该方法首先计算视频中每一帧图像上各像素点的光流;然后自适应求取反映像素点光流变化大小的二值映射图;接着分区块计算视频片段上的光流变化频率直方图,构建行为描述子;最后采用线性支持向量机进行特征训练与分类。实验表明,所提方法在检测群体骚乱行为时虚警率和漏警率低、识别率高,可广泛用于智能视频监控领域。 Group riot activity is the focus of video surveillance,which is emergent and destructive.To detect the group riot activity intelligently is helpful for improving the intelligence level of video surveillance.The common activity detection methods have high false alarm rate while detecting group riot activity from videos.In this paper,a detection method for group riot activity was proposed based on change frequency of optical flow's magnitude.Firstly,the optical flow of each pixel on each frame in a video is calculated.Secondly,a binary map is obtained to reflect the changes of optical flow aptively.Then an activity descriptor by dividing an image into several blobs and the change frequency histogram of optical flow is calculated independently.Finally,the activity features are trained and classified by using a linear support vector machine.Experiments show that the new method has low false alarm rate,low missed alarm rate and high genuine acceptance rate,while detecting group riot activity.So it can be widely used in the field of intelligent video surveillance.
作者 林杰 林拉
出处 《计算机科学》 CSCD 北大核心 2016年第5期283-287,共5页 Computer Science
基金 广东省科技厅项目(2013B070207001)资助
关键词 群体骚乱行为 行为检测 光流 支持向量机 Group riot activity Activity detection Optical flow SVM
  • 相关文献

参考文献6

二级参考文献122

  • 1魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3王张琦,曹渠江.基于马尔可夫链的半监督分类器[J].上海理工大学学报,2007,29(1):51-54. 被引量:1
  • 4Collins R T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Mazhine Intelligence, 2000, 22(8): 745 - 746 被引量:1
  • 5Hogg D. Model-based vision: a program go see a walking person. Image and Vision Computing, 1983, 1(1): 5-20 被引量:1
  • 6Chain T J, Rehg J M. A multiple hypothesis approach to figure tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ford Collins, USA: IEEE, 1999. 239-244 被引量:1
  • 7Yilmaz A, Shah S. Recognizing human actions in videos acquired by uncalibrated moving cameras. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 150-157 被引量:1
  • 8Cheung G K M, Kanade T, Bouguet J Y, Holler M. A real time system for robust 3D voxel reconstruction of human motions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 714-720 被引量:1
  • 9Lu C M, Ferrier N J. Repetitive motion analysis: segmentation and event classification. IEEE Transaztions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 258-263 被引量:1
  • 10Bobick A F, Davis J W. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267 被引量:1

共引文献83

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部