摘要
已有的粗糙描述逻辑(RDLs)都是基于经典的粗糙集理论,也就是在讨论可以处理不确定信息的粗糙描述逻辑前首先要定义出论域中元素间的某种等价关系。事实上,人们经常会遇到用形式概念表示的对象域,这种情况下一个自然的问题就是:如何处理可能出现的不确定性概念?把形式概念分析与粗糙集理论联系起来作为基础,建立了两种新的粗糙描述逻辑。把文献[14]中Y.Y.Yao等提出的方法应用于新的RDLs,其中的上(下)近似算子分别用格论算子和集合论算子来定义。这里的近似的定义虽然不同于传统的粗糙近似算子形式,但是有很好的实用性。基于这个新颖的上(下)近似的定义,把这两组近似算子引入到描述逻辑的结构中形成两种粗糙描述逻辑FlALC和FsALC。给出了相应的语法和语义,最后还给出了扩展的Tableaux算法,其可以用来解决相应的推理问题。
The existing rough description logic(RDL)are all based on the classical rough set theory,i.e,when dealing with uncertainty knowledge,one must have an equivalence relation on the considered domain of objects in advance.In fact,people often encounter a case that there is a formal concept structure on the domain of objects.A natural question is how to deal with the possibly occurring uncertain concepts.We combined formal concept analysis and rough set theory to establish two new RDLs.The approach proposed by Y.Y.Yao in literature[14]is applied in the frameworks of the new RDLs,where the upper and lower approximations of a non-definable concept are defined by lattice-theoretical operators and set-theoretical operators respectively,and particularly,a new form of lower approximation which is different from the previous form is defined.The notions are very different from the classical form,but it is pretty practical.Based on the novel notions of the upper and lower approximations,we added the approximation operators to the structure of description logic.Then two new RDLs FlALCand FsALC were established.The corresponding semantic and syntax were given.At last,we also gave an extended Tableaux algorithm.It can be used to solve some related reasoning problems.
出处
《计算机科学》
CSCD
北大核心
2016年第5期214-218,共5页
Computer Science
基金
国家自然科学基金项目(11201053
11026081)资助
关键词
形式概念
上近似
下近似
粗糙集
描述逻辑
Formal concept
Upper approximation
Lower approximations
Rough set
Description logic