期刊文献+

空间目标图像的非凸稀疏正则化波后复原 被引量:4

Non-convex sparsity regularization for wave back restoration of space object images
下载PDF
导出
摘要 现有的空间目标图像波后处理方法多直接套用自然光学图像的复原技术,效果并不理想。本文通过分析空间目标图像的近似稀疏性和灰度值服从超拉普拉斯分布的独有特点,提出了一个采用正则化方法的非凸稀疏正则化空间目标图像复原模型。在数值计算过程中,根据交替方向乘数法将复原模型分解为两个子问题,对凸优化子问题采用快速傅里叶变换求解,对非凸优化子问题采用固定点迭代方法求解。文中设计了非凸稀疏正则化空间目标图像波后复原的完整算法流程,并针对模拟图像和真实空间目标图像进行了对比验证。结果显示:相对于最近的流行算法,提出方法的最大峰值信噪比提高了2dB,最大平均结构相似度提高了0.17,最大信息熵提高了3.85,图像清晰度提高了2.65。 The wave back restoration of space object images is usually performed by restoration methods for nature optical images,however,the restoration effect is not ideal.This article proposes a restoration model of a space object image based on non-convex sparsity regularization according to the approximate sparsity of the space object image and the features that the gray value submits to Hyper-Laplace distribution in a regularization way.With the alternating direction multiplier method,the restoration model is split into two sub-problems in the numerical solving process:Fast Fourier transformation is used to solve the convex sub-problem,while the fixed-point iteration is used to solve the nonconvex sub-problem.Then,it gives a complete process for the proposed wave back restoration method of space object images,and do an experiment to test and verify the simulated images and the real spaceobject images.Compared results show that proposed method improves the largest peak signal to noise ratio by 2dB,the average structural similarity by 0.17 and the information entropy and the image definition by 3.85 and 2.65,respectively.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2016年第4期902-912,共11页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2012AA7032031D) 国家自然科学基金资助项目(No.11373043)
关键词 空间目标图像 波后复原 稀疏性 正则化 非凸优化 交替方向乘数法 space object image wave back restoration sparsity regularization non-convex optimization alternating direction multiplier method
  • 相关文献

参考文献30

  • 1RODDIER F. Adaptive Optics in Astronomy [M]. UK: Cambridge University Press, 1999. 被引量:1
  • 2耿则勋著..自适应光学图像复原理论与方法[M].北京:科学出版社,2010:210.
  • 3TIKHONOV A N, ARSENIN U Y. Solution of Ill Posed Problems [M]. New York:John Wiley &Sons, 1977: 9-21. 被引量:1
  • 4ZHENG H, HELI.WICH O. Adaptive data-driven regularization for variational image restoration in the BV spaee[C]. Proceedings of VISAPP ' 07,Barcelona, Spain, 2007, 53-60. 被引量:1
  • 5CHEN X J, NG M K, ZHANG C. Non-Lipschitz lp-regularization and box constrained model for im- age restoration[J]. IEEE Transaction on Image Processing, 2012, 21(12): 4709- 4721. 被引量:1
  • 6STAMATIOS L, AURELIEN B, MICHAEL U. Hessian-based norm regularization for image resto-ration with biomedical applications [J]. IEEE Transactions on Image Processing, 2012, 21 (3): 983-996. 被引量:1
  • 7刘成云,常发亮.基于稀疏表示和Weber定律的运动图像盲复原[J].光学精密工程,2015,23(2):600-608. 被引量:12
  • 8CHAN T F, WONG C K. Total variation blind de- convolution [J]. IEEE Transactions on Image Pro- cessing, 1998, 7(3): 370-375. 被引量:1
  • 9LI W, LI Q, GONG W, et al. Total variation blind deconvolution employing split Bregman itera- tion[J]. Journal of Visual Communication & Im- age Representation, 2012, 23(3):409-417. 被引量:1
  • 10马少贤,江成顺.基于四阶偏微分方程的盲图像恢复模型[J].中国图象图形学报,2010,15(1):26-30. 被引量:20

二级参考文献85

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2张航,罗大庸.一种改进的全变差盲图像复原方法[J].电子学报,2005,33(7):1288-1290. 被引量:13
  • 3Kurdur D, Hatzinakos D. Blind image deconvolution [ J]. IEEE Signal Processing Magazing, 1996, 13 (3) : 43-64. 被引量:1
  • 4Kurdur D, Hatzinakos D. Blind image restoration via recursive filtering using deterministic constraints [ C ]//Proceedings of the 1996 IEEE International Conference on Acoustics, Speech and Signal Processing. Atlanta, GA, USA, 1996,4: 2283- 2286. 被引量:1
  • 5You Y, Kaveh M. A regularization approach to joint blur identification and image restoration [J]. IEEE Transactions on Image Processing, 1996,5 (3) : 416-428. 被引量:1
  • 6Chan T, Wong C. Total variation blind deeonvolutlon[J].IEEE Transactions on Image Processing, 1998,7(3 ) : 370-395. 被引量:1
  • 7Chan T, Wong C. Convergence of the alternating minimization algorithm for blind deconvolution [ J ]. Linear Algebra and Its Application, 2000,316 ( 3 ) : 259- 285. 被引量:1
  • 8Rudin L, Osher S, Fatimi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60 ( 4 ) : 259- 268. 被引量:1
  • 9You Y, Kaveh M. Fourth-order partial differential equations for noise removal[ J]. IEEE Transactions on Image Processing, 2000, 9(10): 1723-1730. 被引量:1
  • 10Chan T, Marqnina A, Mulet P. High-order total variation based image restoration [J]. SIAM Journal on Scientific Computing, 2000,22(2): 503-516. 被引量:1

共引文献60

同被引文献37

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部