期刊文献+

基于改进型人工鱼群算法的支持向量机参数优化 被引量:5

Support Vector Machine Parameter Optimization Based on Improved Artificial Fish Swarm Algorithm
下载PDF
导出
摘要 支持向量机在高维度、小样本情况下具有独特优势,但同时支持向量机的参数优化极大制约了其分类效果,目前参数优化缺乏系统的理论指导;针对传统DAG-SVM训练分类器较多,训练耗时长,分类效果受到结构排序的影响,提出了一种基于"1 vs R"策略的改进型算法;针对SVM传统参数优化方式耗时大,优化精度不高,提出了改进型人工鱼群算法;最后结合1 vs R-DAG支持向量机算法与改进型人工鱼群算法,得到一种新的改进型支持向量机算法;仿真对比实验证实,对支持向量机的参数优化是有效可行的。 Support vector machine(SVM) algorithm has much more advantages than other classify algorithm under high-dimensional,small sample and multi-class situation.But at the same time,the parameters optimization has been one of the main factors restricting SVM effect and there is no clear theory to guide it.For original DAG-SVM algorithm' s long time cost and randomness,an improved algorithm has been proposed;For traditional SVM parameter optimization' s large time consuming and unsatisfactory results,an improved artificial fish swarm algorithm has been proposed;Finally,an improved support vector machine algorithm combined IvsR-DAG-SVM and IAFSA has been proposed.Simulation experiments confirm that the SVM parameter optimization proposed in this paper is feasible and effective.
出处 《计算机测量与控制》 2016年第5期237-241,共5页 Computer Measurement &Control
基金 国家自然科学基金项目(61403265)
关键词 支持向量机 人工鱼群算法 参数优化 有向无环图 support vector machine artificial fish swarm algorithm parameter optimization directed acyclic graph
  • 相关文献

参考文献19

  • 1VapnikV. The nature of statistical learning theory [M]. New York: Wiley, 1998. 被引量:1
  • 2Tang Yuchun, Jin Bo, Zhang Yanqing et al. Granular support vec- tor machines for medical binary classification problems [A]. Pro- ceedings of the IEEE CIBIB [C] . Piscataway, HJ: IEEE Compu- tational Intelligence Society, 2004 : 73 - 78. 被引量:1
  • 3Lin C F, Wang S D. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 3 (2) : 464 -471. 被引量:1
  • 4张桂香,费岚,杜喆,刘三阳.基于类内超平面的模糊支持向量机[J].计算机工程与设计,2008,29(12):3177-3178. 被引量:4
  • 5李苗苗,向凤红,刘新旺.一种新颖隶属度函数的模糊支持向量机[J].计算机工程与科学,2009,31(9):92-94. 被引量:7
  • 6Jayadcva R, Khemchandani S C. Twin support vector machines for pattern classification [J]. IEEE Trans On Pattern Analysis and Machine Intelligence, 2007, 29 (5): 905 - 910. 被引量:1
  • 7Arun K M, Gopal M. Least squares twin support vector machines for pattern classification [J]. Expert Systems with Applications, 2009, 36: 7535- 7543. 被引量:1
  • 8Zhang X S. Boosting twin support vector machine approach for MCs detection [A] . Proceedings of Asia - Pacific Conference on Infor- mation Processing [C]. Shenzhen: [s. n.], 2009, 46: 149-152. 被引量:1
  • 9Peng X J. A v-twin support vector machine (v-TSVM) classifier and its geometric algorithms [J]. Information Sciences, 2010, 180 (20) : 3863- 3875. 被引量:1
  • 10Joachims T. Optimizing Search engines using click through data [A] . Proceedings of the eighth ACM SIGKDD International Con- ferenee on Knowledge Discovery And Data Mining [C]. New York, USA: ACM, 2002, 133-142. 被引量:1

二级参考文献69

共引文献94

同被引文献72

引证文献5

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部