期刊文献+

基于循环平稳度准则的多路雷达信号识别算法 被引量:4

Multichannel Radar Signal Recognition Algorithm Based on DCS
下载PDF
导出
摘要 在日益复杂的电磁环境中分选识别出雷达信号,是电子对抗发挥功用的先决因素。关于雷达信号调制样式与信号参数的先验信息有限,难以为信号分选提供充足的情报支撑,且信号交叠严重制约着信号分选的效能。将上述需求转换为盲源分离问题,通过Givens变换构造高阶分离矩阵,将适用于两路信号的基于3阶循环量的循环平稳度(DCS)盲源分离算法拓展到适用于具有不同循环平稳频率的多路信号。通过理论推导证明了该方法的可行性,并推导出构造Givens矩阵参数确定的方法。利用循环平稳理论提取雷达信号在循环平稳域的特征,结合DCS分离准则进行仿真验证。仿真结果表明,该算法能够实现对多路雷达信号的有效分选。 Recognizing the radar signal in complex electromagnetic environment is the necessary prerequisite for electronic countermeasures to play a role. The priori information about signal modulation and signal parameter is limited,which cannot provide enough intelligence support for signal sorting. In addition,the mixture of signals restricts the effectiveness of signal sorting. The issue mentioned above is converted to a blind source separation. A high-order disjunction matrix is established with Givens transform,and the blind source separation algorithm with degree of cyclostationarity( DCS) based on the third-order cyclic statistics which is suitable for two channel signals is expanded to the multichannel signals with different cyclostationarity frequencies. The feasibility of the proposed method is proved by theoretical derivation,and the method for establishing the parameters of Givens matrix is derived. The features of radar signal in cyclostationary domain are extracted with cyclostationarity theory. The method is simulated with DCS separation principles. The simulated results show that the algorithm can realize the effective sorting of multichannel radar signals.
出处 《兵工学报》 EI CAS CSCD 北大核心 2016年第4期661-669,共9页 Acta Armamentarii
基金 航空科学基金项目(20145596025 20152096019)
关键词 雷达工程 信号识别 循环平稳频率 Givens矩阵 循环平稳度盲源分离算法 多路信号 radar engineering signal recognition cyclostationarity frequency Givens matrix DCS blind source separation algorithm multichannel signal
  • 相关文献

参考文献20

  • 1Latombe G,Granger E,Dilkes F A. Fast learning of grammar pro-duction probabilities in radar electronic support [ J ]. IEEE Trans-actions on Aerospace and Electronic Systems, 2010, 46(3) : 1262-1289. 被引量:1
  • 2Yang Z, Wu Z, Yin Z,et al. Hybrid radar emitter recognitionbased on rough k-means classifier and relevance vector machine.[J]. Sensors, 2013, 13(13) :848 -864. 被引量:1
  • 3Bezousek P, Schejbal V. Radar technology in the Czech Republic[J]. IEEE Aerospace and Electronic Systems Magazine, 2004,19(B) ;27 -34. 被引量:1
  • 4Yin Z , Yang W, Yang Z, et al. A study on radar emitter recogni-tion based on SPDS neural network [ J ]. Information TechnologyJournal, 2011, 10(4) : 883 -888. 被引量:1
  • 5Swiercz E. Automatic classification of LFM signals for radar emit-ter recognition using wavelet decomposition and LVQ classifier[J] ? Acta Physica Polonica A, 2011 , 119(4) :488 -494. 被引量:1
  • 6Ken M Q,Cai J Y,Zhu Y Q , et al. Radar emitter signal classifi-cation based on mutual information and fuzzy support vector ma-chines [ C ] // Proceedings of International Conference on SoftwareProcess. Beijing: IEEE, 2008 : 1641 - 1646. 被引量:1
  • 7关欣,孙迎丰,何友.不完备信息系统的辐射源识别方法研究[J].电子科技大学学报,2008,37(1):8-10. 被引量:6
  • 8张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 9林云,司锡才,周若琳,杨慧.改进灰色关联算法在辐射源识别中的应用[J].通信学报,2010,31(S1):166-171. 被引量:18
  • 10He Z,Shen Y, Wang Q,et al. Mitigating end effects of EMD u-sing non-equidistance grey model[ J]. Journal of Systems Engi-neering and Electronics. 2012, 23(4) ; 603 -611. 被引量:1

二级参考文献74

共引文献59

同被引文献43

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部