期刊文献+

面向智能家居大数据云存储系统设计与实现 被引量:1

Design and implementation of big data cloud storage system for smart home
下载PDF
导出
摘要 为了使传统家居设备可以进行远程遥控,开发了在家具传统设备上引入无线组网技术,使其达到访问和远程控制的效果。针对在数据存储中,传统云存储系统缺少灵活性,不透明,鲁棒性不强,无法有效存储、管理和维护大数据的问题,设计并实现了面向大数据的云存储系统,通过逻辑控制模块对家居系统各业务请求进行智能处理,利用用户访问模块为用户提供底层实现的各项功能,采用存储模块为家居系统提供透明的数据存取功能,利用文件读/写模块将上层逻辑处理和底层存储进行隔离,使所设计系统更加健壮。软件设计过程中,给出数据云存储程序代码,实现大数据云存储。实验结果表明,新一代智能家居云存储系统具有很高的可行性和实用性。 In order to achieve the access and remote control of the traditional home equipments,the wireless network technology is introduced into the traditional home equipments. However,the traditional cloud storage system lacks flexibility,transparency,strong robustness,and cannot effectively store,manage and maintain the large data,so the design and implementation schemes for a big data cloud storage system are put forward. The smart processing of each business request to smart home systems is executed through the logic control module. The access module is used to provide the users with all the functions of the underlying implementation. The storage module is adopted to provides transparent data access functions for the users. The file read-write module is taken to isolate the upper logic processing from the underlying storage to make the designed system more robust. The data cloud storage program code is given for achievement of big data cloud storage. The experimental results show that the smart home cloud storage system of new generation has the high feasibility and practicability.
作者 赵妍 黄伟剑
出处 《现代电子技术》 北大核心 2016年第10期21-24,29,共5页 Modern Electronics Technique
基金 国家自然科学基金(2014JGB347)
关键词 智能家居 大数据存储 云存储 远程遥控 smart home big data storage cloud storage remote control
  • 相关文献

参考文献9

二级参考文献26

  • 1崔杰,李陶深,兰红星.基于Hadoop的海量数据存储平台设计与开发[J].计算机研究与发展,2012,49(S1):12-18. 被引量:141
  • 2武海平,余宏亮,郑纬民,周德铭.联网审计系统中海量数据的存储与管理策略[J].计算机学报,2006,29(4):618-624. 被引量:15
  • 3http://nuteh.apaehe.org/. 被引量:1
  • 4OtisGosvodnetie, ErikHateher.Lueeneinaetion.London:Manning, 2005. 被引量:1
  • 5沈志荣,易乐天,舒继武.大规模数据中心的数据存储可靠性[J].中国计算机学会通讯,2012,8(10):8-16. 被引量:1
  • 6Dean J, Ghemawat S. MapReduce:Simplified Data Processing on Large Clusters[ J], Communications of the ACM,2008,51 (1) : 107 - 113. 被引量:1
  • 7Ghemawat S, Gobioff H, Leung Shun-Tak. The Google File Sys- tem[ J ]. ACM SIGOPS Operating Systems Review, 2003,37 (5) :29 -43. 被引量:1
  • 8Chang F, Dean J, Ghemawat S, et al. Bigtable : A Distributed Storage System for Structured Data [ J ]. ACM Transactions on Computer Systems (TOCS) ,2008,26(2) : 4. 被引量:1
  • 9Zeng Wenying,Zhao Yuelong,Ou Kairi ,et al. Research on Cloud Storage Architecture and Key Technologies [ C ]//Proceedings of the 2rid International Conference on Interaction Sciences: Infor- mation Technology,Culture and Human. ACM,2009. 被引量:1
  • 10Robert G L, Gu Yuhong, Sabala N, et al. Compute and Storage Clouds Using Wide Area High performance Networks[ J]. Future Generation Computer Systems,2009,25 (2) : 179 - 183. 被引量:1

共引文献16

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部