期刊文献+

一种基于本体的并行网络流量分类方法 被引量:5

An Ontology Based Parallel Network Traffic Classification Method
下载PDF
导出
摘要 海量网络流量数据的处理与单一节点的计算能力瓶颈这一矛盾导致数据分类效率低,无法满足现实需求。为解决这一问题,结合本体与MapReduce技术各自在海量异构数据描述与处理方面的优势,提出一种基于本体的并行网络流量分类方法。该方法基于MapReduce并行计算架构,根据网络流量本体结构,对网络流量本体并行化构建;通过并行知识推理完成基于流量统计特征的网络流量分类。实验结果表明,集群环境下基于MapReduce的网络流量本体构建效率明显高于单机环境,而且适当增加计算节点使得加速比线性提升;并行知识推理的分类方法能够有效地提高大规模网络流量的分类效率。 The contradiction between the processing of mass network traffic data and the computing bottleneck of a single node leads to low efficiency of data classification. To address this challenge, we propose an ontology based parallel network traffic classification method by integrating the advantage of ontology and MapReduce in dealing with the description and processing of mass heterogeneous data. Our approach makes use of MapReduce, a framework of parallel computing. Firstly, it uses the ontology to describe and manage network traffic data, and constructs the layered and parallel network traffic ontology. Then it builds the classification model by employing the decision tree algorithm, by which the inference rule set is generated. Network traffic classification based on traffic statistical features is completed by utilizing parallel knowledge reasoning. Implementation results show that data classification efficiency of the proposed approach in group environment is higher than in stand-alone scenario. The speedup ratio increases linearly when increasing the quantity of compute nodes. In addition, the new method is able to improve the classification efficiency of large-scale network traffic significantly.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2016年第3期417-422,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61163058 61363006) 广西可信软件重点实验室开放课题(KX201306) 广西高校云计算与复杂系统重点实验室开放课题(14104)
关键词 知识推理 MAPREDUCE 网络流量分类 本体 并行化 knowledge reasoning MapReduce network traffic classification ontology parallelization
  • 相关文献

参考文献23

  • 1WANG Yu, XIANG Yang, ZHANG Jun, et al. Intemet traffic classification using constrained clustering[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(11): 2932-2943. 被引量:1
  • 2CARELA-ESPAIqOL V, BARLET-ROS P, MULA-VALLS O, et al. An autonomic traffic classification system for network operation and management[J]. Journal of Network and Systems Management, 2015, 23(3): 401-419. 被引量:1
  • 3刘凯鹏,方滨兴.基于社会性标注的本体学习方法[J].计算机学报,2010,33(10):1823-1834. 被引量:14
  • 4陶晓玲,韦毅,孔德艳,张哲.基于本体的网络流量分类方法[J].计算机工程与设计,2016,37(1):31-36. 被引量:4
  • 5HAUG P J, FERRARO J P, HOLMEN J, et al. An ontology-driven, diagnostic modeling system[J]. Journal of the American Medical Informatics Association, 2013, 20(el) el02-ell0. 被引量:1
  • 6OELLRICH A, WALLS R L, CANNON E K S, et al. An ontology approach to comparative phenomics in plants[J]. Plant Methods, 2015, 11(I): 10. 被引量:1
  • 7AZEVEDO C L B, IACOB M E, ALMEIDA J P A, et al. Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for archimate[J]. Information Systems, 2015, 54(12): 235-262. 被引量:1
  • 8EBRAHIMIPOUR V, YACOUT S. Ontology-based schema to support maintenance knowledge representation with a case study of a pneumatic valve[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2015, 45(4): 702-712. 被引量:1
  • 9Gene Ontology Consortium. Gene ontology annotations and resources[J]. Nucleic Acids Research, 2013, 41(D1): D530-D535. 被引量:1
  • 10ALMENDROS-JIMENEZ J M, DOMENE L, PIEDRA- FERNANDEZ J A. A framework for ocean satellite image classification based on ontologies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2): 1048-1063. 被引量:1

二级参考文献36

  • 1Gruber T R. Toward principles for the design of ontologies used for knowledge sharing. International Journal Human Computer Studies, 1995, 43(5-6): 907-928. 被引量:1
  • 2Cimiano P. Ontology Learning and Population From Text: Algorithms, Evaluation and Applications. Heidelberg, Germany: Springer, 2006. 被引量:1
  • 3Sanderson M, Croft B. Deriving concept hierarchies from text//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in InformationRetrieval(SIGIR'99). Berkeley, CA, USA, 1999: 206- 213. 被引量:1
  • 4Golder S A, Huberman B A. Usage patterns of collaborative tagging systems. Journal of Information Science, 2006, 32 (2): 198-208. 被引量:1
  • 5Halpin H, Robu V, Shepherd H. The complex dynamics of collaborative tagging//Proceedings of the 16th International Conference on World Wide Web (WWW'07). Banff, Alberta, Canada, 2007.211-220. 被引量:1
  • 6Mika P. Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web, 2007, 5(1): 5-15. 被引量:1
  • 7Heymann P, Garcia-Molina H. Collaborative creation of communal hierarchical taxonomies in social tagging systems. Stanford University: Technical Report: 2006- 10, 2006. 被引量:1
  • 8Schmitz P. Inducing ontology from flickr tags//Proceedings of the Collaborative Web Tagging Workshop (WWW ' 06 ). Edinburgh, Scotland, UK, 2006. 被引量:1
  • 9Schmitz C et al. Mining association rules in folksonomies// Proceedings of the 10th Conference of the International Federation of Classification Societies(IFCS'06). Ljubljana, SIo venia, 2006:261-270. 被引量:1
  • 10Plangprasopchok A, Lerman K. Constructing folksonomies from user-specified relations on flickr//Proceedings of the 18th International Conference on World Wide Web (WWW'09). Madrid, Spain, 2009:781-790. 被引量:1

共引文献16

同被引文献46

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部