期刊文献+

Low Temperature Reduction of Graphene Oxide Using Hot-plate for Nanocomposites Applications

Low Temperature Reduction of Graphene Oxide Using Hot-plate for Nanocomposites Applications
原文传递
导出
摘要 A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus. A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期411-418,共8页 材料科学技术(英文版)
基金 generously supported by the Space Core Technology Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science,ICT and Future Planning (No.2013M1A3A3A02042257)
关键词 Graphene Nanocomposite Mechanical properties Fracture toughness Graphene Nanocomposite Mechanical properties Fracture toughness
  • 相关文献

参考文献40

  • 1A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191. 被引量:1
  • 2E Schwierz, Nat. Nanotechnol. 5 (2010) 487-496. 被引量:1
  • 3K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457 (2009) 706-710. 被引量:1
  • 4E Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6 (2007) 652-655. 被引量:1
  • 5M.S. Cao, X.X. Wang, W.Q. Cao, J. Yuan, J. Mater. Chem. C 3 (2015) 6589- 6599. 被引量:1
  • 6B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Adv. Mater. 26 (2014) 3484-3489. 被引量:1
  • 7M.A. Rafiee,J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, ACS Nano 3 (2009) 3884-3890. 被引量:1
  • 8A. Yu, P, Ramesh, M.E. ltkis, E. Bekyarova, R.C. Haddon, J. Phys. Chem. C 111 (2007) 7565-7569. 被引量:1
  • 9H. Kim, Y. Miura, C.W. Macosko, Chem. Mater. 22 (2010) 3441-3450. 被引量:1
  • 10D, Zheng, G. Tang, H.B. Zhang, Z.Z, Yu, F. Yavari, N. Koratkar, S.H. Lim, M.W. Lee, Compos. Sci. Technol. 72 (2012) 284-289. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部