期刊文献+

高轨双星辐射源跟踪的高斯和-容积Kalman滤波算法 被引量:3

Gaussian-sum based cubature Kalman filtering algorithm for source geolocation using dual geostationary satellites
下载PDF
导出
摘要 针对辐射源运动方程和观测方程的强非线性,提出基于高斯和框架与5阶容积Kalman滤波(5CKF)的跟踪算法GS-5CKF。该方法将起始时刻的时差观测量所确定的位于地球表面的时差线按经度等间隔划分,初始化多个并行的5CKF,线性组合各滤波器的输出获得辐射源运动状态的估计。针对5CKF,提出新的非线性测度并引入滤波器分裂与合并,从而提高了跟踪精度,同时保持GS-5CKF算法复杂度基本不变。仿真表明,相对仅使用单个5CKF和基于高斯和框架但使用3阶容积Kalman滤波器的GS-3CKF等方法,提出的算法具有更高的估计精度。 To tackle the inherent high nonlinearity of motion equation and observation equation of radiation source, a GS (Gaussian-sum) based 5CKF (5th-order cubature Kalman filter) tracking algorithm, referred to as GS -5CKF, was proposed. It consists of multiple parallel 5CKFs, which were initialized through partitioning the candidate source positions determined by the time difference of arrival measurement at the beginning of the tracking process with respect to the source latitude. The linear combination of filter outputs was conducted to estimate the motion state of radiation source. A new nonlinearity measure was advocated, on the basis of which a filtering splitting and merging procedure was developed to further enhance the performance of GS - 5 CKF while keeping its computational complexity fixed. Simulation results show that: compared with the tracking algorithms using the single 5CKF and the GS -3CKF, the newly proposed GS -5CKF technique exhibits higher source geolocation accuracy.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2016年第2期99-106,共8页 Journal of National University of Defense Technology
基金 国家自然科学基金青年科学基金资助项目(61304264 61305017) 江苏省自然科学基金资助项目(BK20140166)
关键词 高斯和 5阶容积Kalman滤波 辐射源跟踪 非线性滤波 分裂与合并 Ganssian sum 5th-order cubature Kalman filtering source tracking nonlinear filtering splitting and merging
  • 相关文献

参考文献18

  • 1Ho K C, Chan Y T. Geolocation of a known altitude object from TDOA and FDOA measurements [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3) : 770 -783. 被引量:1
  • 2Musicki D, Katme R, Koch W. Mobileemitter geolocation and tracking using TDOA and FDOA measurements [ J ]. IEEE Transactions on Signal Processing, 2010, 58 ( 3 ) : 1863 - 1874. 被引量:1
  • 3Musicki D, Koch W. Geolocation using TDOA and FDOA measurements [ C ]//Proceedings of 11 th International Conference on Information Fusion (FUSION) , 2008:1 -8. 被引量:1
  • 4Deng B, Xiong J Y, Xia C X. The observability analysis of aerial moving target location based on dual-satellite geolocationsystem [ C ] //Proceedings of International Conference on Computer Science and Information Processing (CISP), 2012: 12 -15. 被引量:1
  • 5Jazwinski A H. Stochastic processing and filtering theory [ M ]. New York: Academic Press, 1970. 被引量:1
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation [ J ]//Proceedings of the IEEE, 2004, 92 (3): 401 - 422. 被引量:1
  • 7Arasaratnam I, Haykin S. Cubature Kalman filters [ J ]. IEEE Transactions on Automatic Control, 2009, 54 (6): 1254 - 1269. 被引量:1
  • 8Sarkka S. Bayesian fihering and smoothing [ M ]. New York : Cambridge University Press, 2013. 被引量:1
  • 9Arulampalam M S, Maskell S, Gordon N, et al. Atutorial on particle filter for on-line non-linear/non-Gaussian Bayesian tracking [ J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 10Wang S, Fang J, Tse C K. Spherical simplex-radial cubature Kalman filter [ J ]. IEEE Signal Processing Letters, 2014, 21(1) : 43 -46. 被引量:1

同被引文献14

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部