期刊文献+

高斯图模型及其在股票价格上的应用

Gauss Graph Model and its Application in Stock Price
原文传递
导出
摘要 随着科技的进步,高维数据的产生、收集变得越来越容易;传统的建模方法对变量间的结构处理较为简单,这对高维数据的分析有很大的局限性。高斯图模型可以很好的描述这种结构关系,它将变量间的结构信息通过精度矩阵(协方差矩阵的逆矩阵)中的元素来表示。本文采用CLIME方法估计精度矩阵,并且详细给出CLIME估计下的精度矩阵与其估计量在最大范数下的收敛速度的证明过程,最后将得到的精度矩阵估计量应用于股票价格上,使得股票价格之间的结构关系直观明了。 With the rapid development of technology, the generation and collection of high - dimensional data is becoming more and more easier. The traditional modeling method makes a simple handle with variable structure, which could cause significant limitation of high - dimensional data. Gaussian graph model describes the structure via the elements of the precision matrix ( the inverse matrix of covariance matrix). This article use CLIME method to estimate precision matrix and improve the process of proof of convergence rate under norm. Finally the real exam- ple (stock price) is given. As a result, the structure of the relationship between stocks prices intuitive and easy to understand.
出处 《阴山学刊(自然科学版)》 2016年第2期16-19,共4页 Yinshan Academic Journal(Natural Science Edition)
关键词 精度矩阵 高斯图模型 CLIME Precision matrix Gaussian graph model CLIME
  • 相关文献

参考文献10

  • 1Cai Tony, Weidong Liu,Xi Luo. A Constrained L1 Minimi- zation Approach to Sparse Precision Matrix Estimation [ J ]. Journal of the American Statistical Association, 2011, 494 (106) : 594 -607. 被引量:1
  • 2Meinshausen N., Biihlmann P. High Dimensional Graphs and Variable Selection with the Lasso[ D]. Annals of Statis- tics, 2006,34 (03) : 1436 - 1462. 被引量:1
  • 3Banerjee O. , Ghaoui L. E. ,d' Aspremont A. Model Selec- tion Through Sparse Maximum Likelihood Estimation [ J ]. Journal of Machine Learning Research, 2008, (09) : 485 - 516. 被引量:1
  • 4Friedman J. , Hastie T. , Tibshirani R. Sparse Inverse Co- variance Estimation with the Graphical Lasso [ J ]. Biostatis- tics, 2008,9(03) : 432 - 441. 被引量:1
  • 5Bickel P. , Levina E. Covarianee Regularization by Thresh- olding[ J] . The Annals of Statistics, 2008,36 (01) : 199 227. 被引量:1
  • 6Rothman A. , Bickel P. , Levina E. ,Zhu J. Sparse Permuta- tion Invariant Covarianee Estimation [ J ]. Electronic Journal of Statistics, 2008, (02) : 494 - 515. 被引量:1
  • 7Dempster A.P. Covariance Selection[J]. Biometrika,1972, 32:95 - 108. 被引量:1
  • 8Drton M, Perlman M. Model Selection for Gaussian Concen- tration Graphs[ J]. Biometrika ,2004,91 (03) :591 - 602. 被引量:1
  • 9Lauritzen S.L. Graphical Models [ M ]. Oxford :Clarendon Press , 1996. 被引量:1
  • 10Whittaker J. Graphical Models in Applied Multivariate Sta- tistics [ M]. Chichester: John Wiley and Sons, 1990. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部