期刊文献+

强化固相反应法制备超微LiNi_(0.5)Mn_(1.5)O_4粉末的工艺研究

Study on Ultrafine-LiNi_(0.5)Mn_(1.5)O_4 Prepared by Enhanced Solid State Method
下载PDF
导出
摘要 以NiO,MnO_2和Li_2CO_3粉末为前驱体,采用高能球磨法对其进行活化处理,继而对其进行两段煅烧处理,成功地合成出了具有尖晶石结构的LiNi_(0.5)Mn_(1.5)O_4超微粉末。采用X射线衍射和扫描电子显微镜对最终产物的物相组成和形貌特征进行了表征。结果表明:经过高能球磨活化处理10 h后的粉末前驱体在700℃煅烧5 h之后再在900℃保温1 h的产物为结晶性能好的尖晶石型LiNi_(0.5)Mn_(1.5)O_4,粉末粒径大约为600 nm,粒径分布均匀,以0.1 C的倍率充放电,最高放电比容量达到127.8 m Ah/g,在0.5 C倍率下循环50次的容量保持率为98.8%。 The ultrafine-LiNi0.5Mn1.5O4 with cubic spinel structure was successfully synthesized using Li2CO3,MnO2 and NiO as starting materials by mechanical activated followed by double calcining. The LiNi0.5Mn1.5O4 powders were also characterized by X-ray diffraction( XRD), scanning electron microscopy( SEM). It is found that can be obtained by ball-mill for 10 h followed by sintering at 700 ℃ /5 h-900 ℃ /1 h. The well-ordered high crystalline LiNi0.5Mn1.5O4 powders with the mean size of the primary nanoparticles about 600 nm and a narrow size distribution,and the discharge capacity is 127. 8m Ah / g at C /10 rate. After 50 cycles it could retain 98. 8% of its initial discharge capacity at the rate of0. 5 C.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第4期956-961,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(U1202272)
关键词 锂离子电池 机械力活化 固相合成法 LINI0.5MN1.5O4 正极材料 lithium ion battery mechanical activated solid state reaction LiNi0.5Mn1.5O4 cathode material
  • 相关文献

参考文献13

  • 1Wu X,Kim S B.Improvement of Electrochemical Properties of Li Ni0.5Mn1.5O4Spinel[J].Journal of Power Sources,2002,109(1):53-57. 被引量:1
  • 2Ma X H,Kang B,Cerder G.High Rate Micron-sized Ordered Li Ni0.5Mn1.5O4[J].Journal of the Electrochemical Society,2010,157(8):A925-A931. 被引量:1
  • 3Idemoto Y,Sekine H,Ui K,et al.Crystal Structural Change during Charge-discharge Process of Li Mn1.5Ni0.5O4as Cathode Material for 5 V Class Lithium Secondary Battery[J].Solid State Ionics,2005,176:299-306. 被引量:1
  • 4Fang X,Lu Y,Ding N,et al.Electro-chemical Properties of Nano-and Micro-sized Li Ni0.5Mn1.5O4Synthesized via Thermal Decomposition of Ternary Eutectic Li-Ni-Mn Acetate[J].Electrochimica-Acta,2010,55(3):832-837. 被引量:1
  • 5Fan Y,Wang J,Ye X,et al.Physical Properties and Electrochemical Performance of Li Ni0.5Mn1.5O4Cathode Material Prepared by a Coprecipitation Method[J].Materials Chemistry&Physics,2007,103(1):19-23. 被引量:1
  • 6Xie J L,Huang X,Zhu Z B,et al.Hydrothermal Synthesis of Orthorhombic Li Mn O2Nano-particles[J].Ceramics International,2011,37(1):419-421. 被引量:1
  • 7Pitchai R,Thavasi V,Mhaisalkar S G,et al.Nanostructured Cathode Materials:a Key for better Performance in Li-ion Batteries[J].J.Mater.Chem.,2011,21:11040-11051. 被引量:1
  • 8Anders Lundblad,Bill Bergman.Synthesis of Li Co O2Starting from Carbonate Precursors II.Influence of Calcination Conditions and Leaching[J].Solid State Ionics,1997,96:183-193. 被引量:1
  • 9吴其胜编著..无机材料机械力化学[M].北京:化学工业出版社,2008:224.
  • 10Kim J H,Myung S T,Yoon C S,et al.Comparative Study of Li Ni0.5Mn1.5O4-σand Li Ni0.5Mn1.5O4Cathodes Having Two Crystallo-graphic Structures:Fd3m and P4332[J].Chemistry of Materials,2004,16(5):906-914. 被引量:1

二级参考文献8

  • 1Amine K, Tukamoto H, Yasuda H, et al. J. Power Sources,1997,68:604-608. 被引量:1
  • 2Zhong Q, Bonakdarpour A, Zhang M, et al. J. Electrochem.Soc, 1997,144(1):205-213. 被引量:1
  • 3Ohzuku T, Takeda S, Iwanaga M. J. Power Sources, 1999,81-82:90-94. 被引量:1
  • 4Idemoto Y, Narai H, Koura N. J. Power Sources, 2003,119-121:125-129. 被引量:1
  • 5Kim J H, Myung S T, Sun Y K. Electrochim Acta, 2004,49:219-227. 被引量:1
  • 6Wu X, Kim S B. J. Power Sources, 2002,109:53-57. 被引量:1
  • 7Alcantara R, Jaraba M, Lavela P, et al. Electrochim Acta,2002,47:1829-1835. 被引量:1
  • 8Lee Y S, Sun Y K, Ota S, et al. Electrochem Commun, 2002,4(12):989-994. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部