期刊文献+

基于深度学习的手绘草图识别 被引量:26

Sketch Recognition Using Deep Learning
下载PDF
导出
摘要 现有的手绘草图识别方法严重依赖于费时费力的手工特征提取,而经典的深度学习模型主要是为彩色多纹理自然图像设计,用于识别手绘草图时效果不甚理想。提出一种基于深度学习的手绘草图识别方法(DeepSketch),该算法根据手绘草图缺失颜色、纹理信息的特点,使用大尺寸的首层卷积核取代自然图像识别中常使用的小尺寸首层卷积核,获得更多的空间结构信息。利用训练浅层模型获得的模型参数来初始化深层模型对应层的模型参数,以加快收敛,减少训练时长。加入不改变特征大小的卷积层来加深网络深度等方法以减小错误率。实验结果表明,所提出的方法较之其它几种主流的手绘草图识别方法具有良好的正确率,对250类手绘草图识别正确率达到69.2%。 In order to salve the existing problem of the sketch recognition heavily relying on the manual feature extraction which is very time-consuming, a method of sketch recognition based on deep leaming, called Deep-Sketch, was proposed. The classical deep learning models were mainly designed for natural color image recognition which failed on the sketch recognition. Deep-Sketch aimed to obtain more spatial structure information by using the large-size convolution kernel instead of the small-size convolution kernel in the first convolution layer. In addition, a shallow model was trained to obtain parameters which were used to initialize the corresponding layer parameters of the Deep-Sketch to reduce the model training time. Deep-Sketch was deepened with the convolution layers which kept the feature size to reduce the error rate. The results showed that the Deep-Sketch is superior to other state-of-the-art sketch recognition methods and achieves 69.2% accuracy on the sketch dataset including 250 classes.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第3期94-99,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(61472001 61202227) 安徽省自然科学基金项目(1408085MF122 1508085MF127) 安徽省高校自然科学研究重点项目(KJ2016A041) 安徽大学信息保障技术协同创新中心公开招标课题(ADXXBZ2014-5 ADXXBZ2014-6)
关键词 手绘草图识别 深度学习 卷积神经网络 sketch recognition deep learning convolution neural network
  • 相关文献

参考文献24

  • 1Eitz M,Hays J,Alexa M.How do humans sketch objects?[J].ACM Transactions on Graph,2012,31(4):44-54. 被引量:1
  • 2Schneider R G,Tuytelaars T.Sketchclassification and clas- sification-driven analysis using fisher vectors[J].ACM Transactions on Graphics,2014,33(6):174-183. 被引量:1
  • 3Sun Zhenbang,Wang Changhu,Zhang Liqing,et al.Free hand-drawn sketch segmentation[C]//Proceedings of the 12th European Conference on Computer Vision.Florence:Springer,2012:626-639. 被引量:1
  • 4Hu Rui,Collomosse J.A performance evaluation of gradi- ent field hog descriptor for sketch based image retrieval[J].Computer Vision and Image Understanding,2013,117(7);790-806. 被引量:1
  • 5Yasseen Z,Verroust-Blondet A,Nasri A.Sketch-based 3D object retrieval using two views and a visual part align- ment[J].The Eurographics Association,2015,3(15):39-46. 被引量:1
  • 6Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 7Li Yi,Hospedales T M,Song Yizhe,et al.Free-hand sketch recognition by multi-kernel feature learning[J],Computer Vision and Image Understanding,2015,137:1-11. 被引量:1
  • 8Amanatiadis A,Kaburlasos V,Gasteratos A,et al.Evalua- tion of shape descriptors for shape-based image retrieval[J].IET Image Processing Journal,2011,5(5):493-499. 被引量:1
  • 9Zhao Peng,Zhu Weiwei,Wu Xianwen,et al.Feature de- scription method for freehand sketch by combining entro- py and potential energy[J].Journal of South China Uni- versity of Technology:Natural Science Edition,2014,42(5):122-127. 被引量:1
  • 10赵鹏,朱伟伟,吴献文,刘慧婷.融合熵和势能的手绘草图特征描述方法[J].华南理工大学学报(自然科学版),2014,42(5):122-127. 被引量:4

二级参考文献23

  • 1Mohamed A, Dahl G E, Hinton G. Acoustic modeling u- sing deep belief networks [ J ]. IEEE Transactions on Au- dio,Speech, and Language Processing,2012,20 ( 1 ) : 14 - 22. 被引量:1
  • 2Deng L, Platt J C. Ensemble deep learning for speech recognition[ C]//Proceedings of the Annual Conference of International Speech Communication Association (INTER- SPEECH). Washington DC :IEEE,2014 : 1915 - 1919. 被引量:1
  • 3Dahl G E, Yu D, Deng L, et al. Context-dependent pre- trained deep neural networks for large-vocabulary speech recognition[ J]. IEEE Transactions on Audio, Speech, and Language Processing,2012,20( 1 ) :30 -42. 被引量:1
  • 4Du J, Dai L R, Huo Q. Synthesized stereo mapping via deep neural networks for noisy speech recognition [ C ]// 2014 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Washington DC : IEEE, 2014 : 1764 - 1768. 被引量:1
  • 5Lee H,Hu T,Jing H,et al. Ensemble of machine learning and acoustic segment model techniques for speech emo- tion and autism spectrum disorders recognition[ C]//Pro-ceedings of the Annual Conference of International Speech Communication Association ( INTERSPEECH ). Washington DC : IEEE ,2013:215 - 219. 被引量:1
  • 6Xu Y,Mo T,Feng Q,et al. Deep learning of feature rep- resentation with multiple instance learning for medical im- age analysis[ C ]//Proceedings of IEEE International Con- ference on Acoustics, Speech and Signal Processing (IC- ASSP). Washington DC :IEEE,2014 : 1626 - 1630. 被引量:1
  • 7Yan Y, Fanty M, Cole R. Speech recognition using neural networks with forward-backward probability generated tar- gets[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington DC : IEEE, 1997,4 : 3241 - 3241. 被引量:1
  • 8Hennebert J, Ris C, Bourlard H, et al. Estimation of global posteriors and forward-backward training of hybrid HMM/ ANN systems [ C ]//Proceedings of European Conference Speech Communication and Technology. 1997:1951 -1954. 被引量:1
  • 9Cosi P, Hosom J P, Valente A. High performance tele- phone bandwidth speaker independent continuous digit recognition[C]//Proceedings of IEEE Workshop on Auto- matic Speech Recognition and Understanding,2001 (AS- RU' 01 ). Washington DC : IEEE ,2001:405 - 408. 被引量:1
  • 10Yah Y. Understanding speech recognition using correla- tion-generated neural network targets [ J ]. IEEE Transac- tions on,Speech and Audio Processing,1999,7(3):350- 352. 被引量:1

共引文献6

同被引文献170

引证文献26

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部