高维纵向属性数据的惩罚广义估计方程分析
Analysis of Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Attribute Data
摘要
文章证明了分析高维纵向二值属性数据的惩罚广义估计方程估计的渐近存在性,相合性与渐近正态性.
This paper proves the asymptotic existence, consistency and asymptotic normality of the estimators of the penal- ized generalized estimating equations for the high-dimensional longitudinal two-value attribute data.
出处
《海南师范大学学报(自然科学版)》
CAS
2016年第1期6-10,共5页
Journal of Hainan Normal University(Natural Science)
基金
广西自然科学基金(2015GXNSFAA139006)
国家自然科学基金(11061002)
关键词
属性数据
惩罚广义估计方程
高维纵向数据
渐近正态性
attribute data
penalized generalized estimating equations
high-dimensional longitudinal data
asymptotic nor- mality
参考文献6
-
1Mc Cullngh P, Nelder J A. Generalized Linear Models[R]. London: Chapman and Ha11,1983. 被引量:1
-
2Xu P, Wu P ,Wang Y, et al. A GEE based shrinkage estimation for the generalized linear model in longitudinal data analysis[R]. Hong Kong:Hong Kong Baptist University,2010. 被引量:1
-
3Wang L, Zhou J, Qu A. Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis[ J ]. Bio- metrics,2012,68 (2) :353-360. 被引量:1
-
4Wang L. GEE annalsis of clustered binary data with diverging number of covariates[ J ]. The Annals of Statistics,2011,39(1): 389-417. 被引量:1
-
5Bennett G. Probability inequality for sums of independent random variables[ J ]. Journal of the American Statistical Association, 1962, 57 (297) :33 -45. 被引量:1
-
6Liang K-Y, Zerger S L. Longitudinal data analysis using generalized linear models[ J ]. Biometrika,1986,73(1): 13-22. 被引量:1
-
1周天翔.鼠性数据的显著性检验—“联立表”检验[J].化工质量,1996(1):25-28.
-
2尹长明,苏连菊,蒙建国.高维纵向计数数据的惩罚广义估计方程分析[J].重庆理工大学学报(自然科学),2016,30(6):154-158.
-
3K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff[.INTRODUCTION[J].Chinese Physics C,2014,38(9):11-17. 被引量:2
-
4韩俊林,张志明.广义线性随机效应模型的局部影响分析[J].统计与决策,2007,23(15):19-20.
-
5王健发,陈淑兰,闫莉.广义估计方程根的强相合性[J].重庆理工大学学报(自然科学),2011,25(8):100-105.
-
6尹长明,陈莉莉,颜然.广义估计方程根的强相合性[J].广西师范学院学报(自然科学版),2012,29(4):34-36.
-
7沈灏,储文松.拟Kirkman系的渐近存在性[J].中国科学(A辑),1994,24(3):241-246. 被引量:1
-
8王达布希拉图,梁达宏,王球玲.基于模糊属性数据的一类过程控制图[J].广州大学学报(自然科学版),2010,9(3):1-3.
-
9闫莉,陈淑兰.纵向数据中伪似然方程的根的相合性[J].海南师范大学学报(自然科学版),2011,24(3):237-241.
-
10王惠文,黄乐乐,王思洋.基于函数型数据的广义线性回归模型[J].北京航空航天大学学报,2016,42(1):8-12. 被引量:7