期刊文献+

基于视觉特征的水果蔬菜自动分类方法 被引量:8

Fruit and Vegetable Automatic Classification Based on Appearance Feature
原文传递
导出
摘要 为实现超市中水果蔬菜等产品的自动销售,提出了一种基于视觉特征的水果蔬菜自动分类方法。首先将所获得的水果蔬菜图像划分为多个重合的子块;接着提取这些子块的视觉特征,即尺度不变特征和方向梯度直方图特征;为了提高特征的表征能力,还将这些提取出的特征融合在一起描述目标;然后对融合后的特征做编码和池化操作以降低特征维数并提高特征区分能力;最后用所得特征训练支持向量机分类器并最终实现水果蔬菜的自动识别与分类。与现有方法相比,提出的方法在超市农产品数据库上取得了较高的识别率,从而为实现水果蔬菜的自动销售提供了技术支持和理论保障。 This paper presents an automatic method of fruit and vegetable classification,which is based on appearance features to make contributions to automatic selling of these goods in supermarkets.First,the fruit and vegetable images are divided into overlapping regions,followed by the appearance features extraction,such as Scale-invariant feature transform and Histogram of Oriented Gradient.Second,the features are fused together for improving the representative ability.To reduce the feature dimension and enhance the discriminative power,the coding and pooling processes are performed on the fused features.Last,a Support Vector Machine classifier is designed based on the features and then the fruit and vegetable can be automatically classified and recognized.Compared to the state-of-the-art works,the presented method produces a higher recognition rate and provides a possible solution for the automatic selling of fruits and vegetables in supermarkets.
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期115-120,共6页 Journal of Chongqing Normal University:Natural Science
基金 甘肃省高等学校基本科研业务费项目 甘肃省高等学校科研资助项目(No.2015A-087)
关键词 水果蔬菜图像 自动分类 视觉特征 编码 池化 fruit and vegetable images automatic classification appearance features coding pooling
  • 相关文献

参考文献14

  • 1Rocha A, Hauagge D C, Wainer J, et al. Automatic fruit and vegetable classification from images[J]. Computers and E- lectronics in Agriculture, 2010,70 ( 1 ): 96-104. 被引量:1
  • 2罗承成,李书琴,唐晶磊.基于多示例学习的超市农产品图像识别[J].计算机应用,2012,32(6):1560-1562. 被引量:7
  • 3Biswas H, Hossain F. Automatic vegetable recognition sys- tem[J]. International Journal of Engineering Science Inven- tion,2013,2(4) :37-41. 被引量:1
  • 4陶华伟,赵力,奚吉,虞玲,王彤.基于颜色及纹理特征的果蔬种类识别方法[J].农业工程学报,2014,30(16):305-311. 被引量:51
  • 5Dubey S R, Jalal S. Fruit and vegetable recognition by fu- sing colour and texture features of the image using machine learning[J]. International Journal of Applied Pattern Rec- ognition,2015,2(2) : 160-181. 被引量:1
  • 6Zhang Y D,Wang S H,Ji G L,et al. Fruit classification n- sing computer vision and feed-forward neural network[J].Journal of Food Engineering, 2014,143 (4) : 167-177. 被引量:1
  • 7Gill J, Sandhu D P, Singh D P, et al. A review of automatic fruit classification using soft computing techniques[C]// International conference on computer, systems and elec- tronics engineering. Johanneshurg: ISAET Publications, 2014,2:99-105. 被引量:1
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2) : 91-110. 被引量:1
  • 9Dalal N,Triggs B. Histograms of oriented gradients for hu- man deteetion[C]//International conference on computer vision and pattern recognition. San Diego: IEEE Publica- tions, 2005,1: 886-893. 被引量:1
  • 10Yang J C,Yu K,Gong Y H,et al. Linear spatial pyramid matching using sparse coding for image classification [C]//International conference on computer vision and pattern recognition. Miami: IEEE Publications, 2009, 1: 1794-1801. 被引量:1

二级参考文献36

  • 1庄东,陈英.基于加权近似支持向量机的文本分类[J].清华大学学报(自然科学版),2005,45(S1):1787-1790. 被引量:16
  • 2戴宏斌,张敏灵,周志华.一种基于多示例学习的图像检索方法[J].模式识别与人工智能,2006,19(2):179-185. 被引量:9
  • 3BOLLE R. M, CONNELL J H, HAAS N, et al. Veggie vision: a produce recognition system[ C]// 3rd IEEE Workshop on Applica- tions of Computer Vision. Piscataway: IEEE Press, 1996:244 - 251. 被引量:1
  • 4ROCHA A, HAUAGGE D C, WAINER J, et al. Automatic fruit and vegetable classification from images [ J]. Computers and Elec- tronics in Agriculture, 2010, 70(1) : 96 - 104. 被引量:1
  • 5DIETI?ERICH T G, LATHROP R H, PEREZ T L, et al. Solving the multiple instance problem with axis-parallel rectangles[ J]. Artificial Intelligence, 1997, 89(1): 31-71. 被引量:1
  • 6MARON O, RATAN A L. Muhiple-instance learning for natural scene classification[ C] // Proceedings of the 15th International Con- ference on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1998:341 -349. 被引量:1
  • 7YANG C. Image database retrieval with multiple-instance learning techniques[ C]// Proceedings of 16th International Conference on Data Engineering. Piscataway: IEEE Press, 2000:81 - 82. 被引量:1
  • 8ZHOU Z H, ZHANG M L, CHEN K J, eta]. A novel bag genera- tor for image database retrieval with muhi-instance learning tech- niques[ C]// Proceedings of the 15th IEEE International Confer- ence on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2003:565-569. 被引量:1
  • 9MARON O. Learning from ambiguity [D]. Boston: Massachusetts Institute of Technology, 1998. 被引量:1
  • 10毛罕平,胡波,张艳诚,钱丹,陈树人.杂草识别中颜色特征和阈值分割算法的优化[J].农业工程学报,2007,23(9):154-158. 被引量:38

共引文献64

同被引文献109

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部