期刊文献+

基于样本扩充的核稀疏表示的人脸识别方法 被引量:3

Kernal sparse representation method based on samples expansion for face recognition
下载PDF
导出
摘要 为进一步提高基于稀疏表示的人脸识别方法识别率,提出一种基于样本扩充的核稀疏表示方法 (KSRMSE)。通过在原始样本中添加少量的噪声,扩大原始样本集的规模,使用核诱导函数从训练样本集中挑选N个最近邻样本,利用这N个最近邻样本的线性组合表示测试样本,根据表示的结果对测试样本进行分类,通过修改N值获得更高的分类精度。实验结果表明,相比同类识别算法,该方法具有更好的识别效果。 To improve the recognition rate of face recognition method based on sparse representation,a kernal sparse representation method based on samples expansion method(KSRMSE)was proposed.The training samples were extended to form a new training set by adding some noise to them and a kernel-induced function was used to determine Nnearest neighbors of the testing sample from the total training samples.The testing sample was represented using the linear combination of determined Nnearest neighbors and the classification was implemented according to the representation results.Through the different values of Nset,the classification was more accurate.Experimental results show that KSRMSE can get better classification results than the same type of algorithms.
出处 《计算机工程与设计》 北大核心 2016年第5期1357-1361,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61170126 61340037) 江苏省普通高校研究生科研创新计划基金项目(CXLX13_67) 南通市科技计划应用研究基金项目(BK2012038)
关键词 人脸识别 稀疏表示 核诱导 样本扩充 N最近邻 face recognition sparse representation kernel-induced samples extension N nearest neighbors
  • 相关文献

参考文献11

  • 1Tang Deyan, Zhu Ningbo, Yu Fu, et al. A novel sparse rep- resentation method based on virtual samples for face recognition [J]. Neural Computing & Applications, 2014, 24 (3): 513-519. 被引量:1
  • 2Khashman Adnan. Application of an emotional neural network to facial recognition [J]. Neural Computing &Applications, 2009, 18 (4): 309-320. 被引量:1
  • 3Zhang Baoeheng, Yu Qiao. Face recognition based on gradient Gabor feature and efficient kernel fisher analysis[J]. Neural Computing & Applications, 2010, 19 (4): 617-623. 被引量:1
  • 4Zhao Guoying, Huang Xiaohua, Taini Matti, et al. Facial ex- pression recognition from near-infrared videos [J]. Image and Vision Computing, 2011, 29 (9): 607-619. 被引量:1
  • 5Xu Yong, Zuo Wangmeng, Fan Zizhu. Supervised sparse rep- resentation method with a heuristic strategy and face recognition experiments [J]. Neurocomputing, 2012, 79 (1): 125-131. 被引量:1
  • 6Zhang Lei, Yang Meng, Feng Xiangehu. Sparse representa- tion or collaborative representation: Which helps face recogni- tion? [C] //Proc of the IEEE International Conference on Computer Vision. Barcelona: IEEE, 2011: 471-478. 被引量:1
  • 7Mehrdad J Gangeh, Ali Ghodsi, Mohamed S Kamel. Kerne lized supervised dictionary learning [J]. IEEE Transactions on Signal Processing, 2013, 61 (19): 4753-4767. 被引量:1
  • 8Lai Zhihui, Jin Zhong, Yang Jian, et al. Sparse local discrimi- nant projections for feature extraction [C] //Proceedings of ICPR, 2010: 926-929. 被引量:1
  • 9Zhu Ningbo, Li Shengtao. A Kernel-based sparse representa- tion method for face recognition [J]. Neural Computing& Ap- plications, 2014, 24 (3-4): 845-852. 被引量:1
  • 10于旭,杨静,谢志强.虚拟样本生成技术研究[J].计算机科学,2011,38(3):16-19. 被引量:16

二级参考文献24

  • 1温津伟,罗四维,赵嘉莉,黄华.通过创建虚拟样本的小样本人脸识别统计学习方法[J].计算机研究与发展,2002,39(7):814-818. 被引量:9
  • 2张莉,陈恭和.入侵检测系统中训练样本集的构造方法[J].计算机工程与应用,2006,42(28):145-146. 被引量:6
  • 3An G. The effect of adding noise during back propagation training on a generalization performance[J]. Neural Computation, 1996(8): 643-671. 被引量:1
  • 4Li Der-chiang, Fang Yao-hwei. A non-linearly virtual sample generation technique using group discovery and parametric equations of hypersphere[J]. Expert Systems with Applications, 2009,36(1) :844-851. 被引量:1
  • 5Zhou Zhi-hua. Learning with unlabeled data and its application to image retrieval[C]//Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Guilin, China, 2006 : 5 10. 被引量:1
  • 6Raudys S. Trainable fusion rules. II. Small sample-size effects [J]. Neural Networks,2006,19(10) : 1517-1527. 被引量:1
  • 7Blum A,Mitchell T. Combining labeled and unlabeled data with eo-training[C]//Proceedings of the llth Annual Conference on Computational Learning Theory. Madison, WI, 1998 : 92-100. 被引量:1
  • 8Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data[C]// Proceedings of the 17th International Conference on Machine Learning. San Francisco,CA, 2000:327-334. 被引量:1
  • 9Miller D J,Uyar H S. A mixture of experts classier with learning based on both labeled and unlabeled data [A]//Mozer M, Jordan M I, Petsche T, eds. Advances in Neural InformationProcessing Systems 9[C]. Cambridge, MA: MIT Press, 1997: 571-577. 被引量:1
  • 10Abe N, Mamitsuka H. Query learning strategies using boosting and bagging[C] // Proceedings of the 15th International Conference on Machine Learning. Madison,WI, 1998:1-9. 被引量:1

共引文献15

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部