期刊文献+

基于Group-LASSO方法的广义半参数可加信用评分模型应用研究 被引量:13

The Application of Generalized Semi-parametric Additive Credit Score Model Based on Group-LASSO Method
原文传递
导出
摘要 信用风险是目前商业银行面临的风险中最为重要和最为复杂的,新巴塞尔协议要求各国条件的银行通过实施内部评级法来度量并控制信用风险,内部评级法即通过银行收集的客户相历史数据来构建数学模型,测算客户的违约概率进而对客户进行评分。文章针对信用评分模型解释变量维数较高,类型丰富,好坏客户类型数量不均衡等特点,利用广义半参数可加模型对户违约概率进行建模,并将Group LASSO方法应用于模型进行变量选择和估计。实证研究表明本文提出的模型和方法与以往常用的线性logistic回归模型相比,在模型的判别能力和预测能以及解释性和计算效率上均有较大优势。 Credit Risk is the most important and complex risk faced by commercial banks. New Basel Capital Accord require that banks with necessary conditions should implement the Internal RatingBased (IRB) approach to control the credit risk. IRB approach is according to construct a model based on historical data to estimate clients' default probability and give them rating. Regarding such features of the credit scoring model as high-dimensional explanatory variable, diverse variable types and the imbalance in the number of different types of customers, this paper discusses using the generalized semi-parametric additive model to model clients' default probabilities, and the Group LASSO method will be applied to select and estimate variables. Empirical studies show that compared with the usual linear Logistic model, the model and method proposed in this paper have great advantages in terms of discriminant and prediction accuracy as well as explanatory effect and computational efficiency.
作者 张娟 张贝贝
出处 《数理统计与管理》 CSSCI 北大核心 2016年第3期517-524,共8页 Journal of Applied Statistics and Management
基金 国家自然科学基金青年项目(项目号:11301351)
关键词 信用风险 广义半参数可加模型 GROUP LASSO方法 credit risk, generalized semi-parametric additive model, group-LASSO method
  • 相关文献

参考文献8

  • 1Tibshirani R. Regression shrinkage and selection via the lasso [J]. J. R. Statist. Soc. (B), 1996(58): 267 -288. 被引量:1
  • 2Bakin S. Adaptive regression and model selection in data mining problems [D]. PhD Thesis, Aus- tralian National University, Canberra, 1999. 被引量:1
  • 3Yuan M, Lin Y. Model selection and estimation in regression with grouped variables [J]. J. R. Statist.Soc. (B), 2006, (68): 49- 67. 被引量:1
  • 4Lukas Meier, Sara van de Geer, Peter Biihlmann. Tile group lasso for logistic regression [J]. J. R. Statist. Soc. (B), 2008, (70): 53 -71. 被引量:1
  • 5Buja A, Hastie T J, Tibshirani R J. Linear smoother and additive models (with discussion) [J]. Annals of Statistics, 1989, (17): 453- 555. 被引量:1
  • 6Linton O, Nielsen J P. A kernel method of estimating structured nonparametric regression based on ma.reinal integration [J]. Biometrika. 1995. (82): 93 -100. 被引量:1
  • 7王小明.关于一类广义可加违约概率模型的探讨[J].系统工程理论与实践,2008,28(6):52-58. 被引量:4
  • 8李娴.基于GCV的LS-SVM模型选择在个人信用评估中的应用[J].河南大学学报(自然科学版),2011,41(3):240-245. 被引量:3

二级参考文献6

共引文献5

同被引文献98

引证文献13

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部