摘要
In this study, a resorufin derivative RTP-1, which is a novel fluorescent ‘‘turn-on'' probe for sensitive detection of hydrazine within 30 min, is designed and synthesized. The selective deprotection of the ester group of the probe by hydrazine led to a prominent enhancement of fluorescent intensity, as well as a remarkable color change from colorless to pink, which could be distinguished by naked eye. The fluorescence enhancement showed decent linear relationship with hydrazine concentration ranging from 0 to 50 mmol/L, with a detection limit of 0.84 mmol/L. The specificity of RTP-1 for hydrazine to a number of metal ions, anions and amines is satisfactory. The sensing mechanism of RTP-1 and hydrazine was evaluated by HPLC, ESI mass spectrometry and density functional theory(DFT).Moreover, we have utilized this fluorescent probe for imaging hydrazine in living cells, and the fluorescence was clearly observed when the cells were incubated with hydrazine(100 mmol/L) for 30 min.
In this study, a resorufin derivative RTP-1, which is a novel fluorescent ‘‘turn-on'' probe for sensitive detection of hydrazine within 30 min, is designed and synthesized. The selective deprotection of the ester group of the probe by hydrazine led to a prominent enhancement of fluorescent intensity, as well as a remarkable color change from colorless to pink, which could be distinguished by naked eye. The fluorescence enhancement showed decent linear relationship with hydrazine concentration ranging from 0 to 50 mmol/L, with a detection limit of 0.84 mmol/L. The specificity of RTP-1 for hydrazine to a number of metal ions, anions and amines is satisfactory. The sensing mechanism of RTP-1 and hydrazine was evaluated by HPLC, ESI mass spectrometry and density functional theory(DFT).Moreover, we have utilized this fluorescent probe for imaging hydrazine in living cells, and the fluorescence was clearly observed when the cells were incubated with hydrazine(100 mmol/L) for 30 min.
基金
supported by the National Basic Research Program of China (973 Program, Nos. 2012CB720600, 2012CB720603)
the National Science Foundation of China (Nos. 91413109, 21202126)
East Lake High-tech Zone 3551 Talents Scheme