期刊文献+

相场断裂模型分步算法在ABAQUS中的实现 被引量:16

Implementation of a staggered algorithm for a phase field model in ABAQUS
原文传递
导出
摘要 首次基于ABAQUS平台实现相场断裂模型的分步算法,利用UMAT/VUMAT子程序接口对非线性平衡方程进行隐式/显式求解,提出位移场和相场的分步求解算法。准静态加载下的I和II型裂缝扩展问题、冲击荷载作用下的I型动态裂缝分叉和II型动态裂缝扩展问题,计算所得结果与已有文献和试验成果基本一致,说明了方法的可靠性;同时,对岩石力学领域中的双平行翼型裂缝相交和动态裂缝三维曲面扩展等问题,也利用该方法进行模拟。计算实例表明,结构储存的较高弹性应变能是脆性材料动态裂缝分叉的主要原因,而相场断裂模型是一种能够计算包括裂缝起裂、相交、分叉和三维曲面扩展的有效断裂计算方法,借助通用有限元平台可以方便地实现其分步算法。 A staggered updated method for a phase field model was implemented in the commercial finite element software ABAQUS through UMAT and VUMAT subroutines. In order to verify the reliability of the algorithm,crack propagation in modes I and II under quasi-static and dynamic loads was calculated. All the results are generally consistent with the testing results in the existed references. In addition,simulations for wing cracks and curved surface cracks were also carried out. The results show that the main reason of dynamic crack branching is the high elastic strain energy stored in solids. The algorithm of phase field model is effective to simulate crack initiation,intersection,bifurcation and propagation in three-dimensional space,and can be executed conveniently in commercial FEM software.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2016年第5期1019-1030,共12页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(51339003,51579134) 国家重点基础研究发展计划(973)项目(2013CB035902)~~
关键词 岩石力学 ABAQUS UMAT/VUMAT 相场模型 分步算法 裂缝分叉 rock mechanics ABAQUS UMAT/VUMAT phase field model staggered algorithm crack branching
  • 相关文献

参考文献31

  • 1BELYTSCHKO T, LIN J I. A 3-dimensional impact panertation algorithm with erosion[J]. Computers and Structures, 1987, 25(1).. 95 - 104. 被引量:1
  • 2GORDON R. J, STRYK R. A. Eroding interface and improved tetrahedral element algorithms for high-velocity impact computations in three dimensions[J]. International Journal of Impact Engineering, 1987, 5(1/4): 411-421. 被引量:1
  • 3FAN R, FISH J. The rs-method for material failure simulations[J].Intemational Journal for Numerical Methods in Engineering, 2008, 73(11): 1 607- 1 623. 被引量:1
  • 4LIU Y, FILONOVA V, HU N, et al. A regularized phenomenological multiscale damage model[J]. International Journal for Numerical Methods in Engineering, 2014, 99(12): 867 - 887. 被引量:1
  • 5SONG J H, WANG H W, BELYTSCHKO T. A comparative study on finite element methods for dynamic fracture[J]. Computational Mechanics, 2008, 42(2): 239-250. 被引量:1
  • 6XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1 397 - 1 434. 被引量:1
  • 7CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials[J]. International Journal of Solids and Structures, 1996, 33(20/22): 2 899 - 2 938. 被引量:1
  • 8SAM C H, PAPOULIA K D, VAVASIS S A. Obtaining initially rigid cohesive finite element models that are temporally convergent[J]. Engineering Fracture Mechanics, 2005, 72(14): 2 247 - 2 267. 被引量:1
  • 9BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601 - 620. 被引量:1
  • 10MOES N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131 - 150. 被引量:1

同被引文献64

引证文献16

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部