期刊文献+

一种面向WSN时间同步的振荡器模型设计与研究

Design and Research on an Oscillator Model Oriented at WSN Time Synchronization
下载PDF
导出
摘要 WSN节点采用低成本的晶振,节点之间的频率差异不可避免。该项目讨论频率对耦合振荡器的影响,设计一个适合于WSN时间同步的频率互异耦合振荡器模型。该模型验证振荡器系统在所有条件下都可以达到同步,分析振荡器系统的理论模型,给出系统达到同步的条件。通过多次实验,分析参数对同步的不同影响,验证该模型的可行性。该模型解决振荡器模型因频率不同而出现误差增大的问题,提升整个系统的精度。该模型在经典耦合振荡器基础上,加入频率互异和多跳网络拓扑两个因素,使其更加适用于无线传感器网络。 The WAN's nodes adopt low cost crystal oscillator, so the frequency difference between nodes is inevitable. Discusses the frequency influ- ence to coupled oscillator, and designs a frequency different coupled oscillator model which is suitable for time synchronization. Themodel validates that the oscillator system can realize the synchronization under any conditions and analyze the theory model of oscillator and give the condition of synchronization. By simulation experiment, analyzes the influence of parameters' to synchronization and validates the model feasibility. The model solves the problem that the error will be lager because of the different frequency of classic oscillator model, and improves the system's precision. The model adds two factors of frequency different and multi hop network topology based on classic coupled oscillator and makes it more suitable for WSNs.
出处 《现代计算机》 2016年第7期3-5,24,共4页 Modern Computer
基金 浙江省教育厅科研课题(No.Y201432666)
关键词 频率互异 无线传感网网络 时间同步 Different Frequency WSN Time Synchronization
  • 相关文献

参考文献3

二级参考文献50

  • 1徐朝农,赵磊,徐勇军,李晓维.无线传感器网络时间同步协议的改进策略[J].计算机学报,2007,30(4):514-523. 被引量:16
  • 2Sukun Kim, Shamim Pakzad, David Culler, et al. Health monitoring of civil infrastructures using wireless sensor networks [ C ]//Proceedings of the 6th International Conference on Information Processing in Sensor Networks. Cambridge, MA, April 2007 : 254 - 263. 被引量:1
  • 3Rhee I K, Lee J, Kim J, et al. Clock synchronization in wireless sensor networks: an overview[J]. Sensors,2009,9( 1 ) :56 -85. 被引量:1
  • 4Smith H M. Synchronous flashing of fireflies [ J ]. Science, 1935,82 (2120) :151 - 152. 被引量:1
  • 5Buck J. Synchronous rhythmic flashing of fireflies [ J ]. The Quarterly Review of Biology, 1988,63 ( 3 ) :265 - 289. 被引量:1
  • 6Peskin C S. Self-synchronization of the cardiac pacemaker: Mathematical aspects of heart physiology [ M 1. New York;New York University. 1975:268 - 278. 被引量:1
  • 7Mirollo R E, Strogatz S H. Synchronization of pulse-coupled biological oscillators[ J ]. SIAM Journal on Applied Mathematics, 1990,50 (6): 1645 - 1662. 被引量:1
  • 8Ernst U,Pawelzik K, Geisel T. Delay-induced multistable synchronization of biological oscillators [ J 1. Physical Review E, 1998,57 (2) :2150 - 2162. 被引量:1
  • 9Ernst U, Pawelzik K, Geisel T. Synchronization induced by temporal delays in pulse-coupled oscillators [ J ]. Physical Review Letters, 1995,74 (9) :1570 - 1573. 被引量:1
  • 10Ernst U, Pawelzik K, Geisel T. Delay-induced muhistable synchronization of biological oscillators [ J ]. Physical Review E, 1998,57 ( 2 ) : 2150 -2162. 被引量:1

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部