期刊文献+

加权图的染色在无线传感网络中的应用

The Application of Weighted Graph Coloring in Wireless Sensor Networks
下载PDF
导出
摘要 图染色问题一直是图论中十分活跃的研究课题,目前已经有着深刻而丰富理论结果,但是在实际中还没得到广泛的应用。无线传感网络(wireless sensor networks)由于它易于部署、成本低廉、自组织自适应等优点,近年来一直是国内外研究的热点之一。该文将基于图染色问题中的加权图染色,设计出新型无线传感网络的调度算法。建立起无线传感网络的结构特性与图染色之间的联系,从而使用新型的广播调度算法确定出帧中最少时序数和最优息道利用率。 Graph coloring problem has been a very active topic in graph theory.Nowadays,there have been many deeply theoretical results,but it has not been used in practice widely.Wireless sensor network(WSN),because of the advantages of easy-to-deploy、low cost、selforganizing and self-adapting it has been one of the researching hotspots of domestic and foreign int recent years.This article will design a new scheduling algorithm in wireless sensor network based on the weighted graph coloring problem of graph coloring.Establish the link between the structural characteristics of the wireless sensor network and graph coloring.Using new broadcast scheduling algorithm to determine the shortest activation time and the best utilization of channel.
作者 张雷
出处 《电脑知识与技术(过刊)》 2010年第29期8339-8340,8342,共3页 Computer Knowledge and Technology
关键词 图染色 无线传感网络 加权图染色 时分复用 广播调度 graph coloring wireless sensor network weighted graph coloring TDM broadcast scheduling
  • 相关文献

参考文献5

二级参考文献12

  • 1Peng Y, Soong B H, Wang L. Broadcast scheduling in packet radio networks using mixed tabu-greedy algorithm. Electronics Letters, 2004, 40 : 375-376. 被引量:1
  • 2Baker D J, Ephremides A. The architectural organization of a mobile radio network via a distributed algorithm. IEEE Trans. on Comm., 1981, 29: 1694-1701. 被引量:1
  • 3Tassiulas L, Ephremides A, Gunn J. Solving hard optimization problems arising in packet radio networks using Hopfield's net. Proc. of Conf. Info. Sci. Sys., 1989, 3:603-608. 被引量:1
  • 4Even S, Goldreich O, Moran S. On the Np completeness of certain network testing problems. Networks, 1984, 14: 1-24. 被引量:1
  • 5Funabiki N, Takefuji Y. A parallel algorithm for broad- cast scheduling problems in packet radio networks. IEEE Trans. on Comm., 1993, 41(6): 828-831. 被引量:1
  • 6Takefuji Y, Lee K, Aiso H. An artificial maximum neural network: a winner-take-all neuron model forcing the state of the system in a solution domain. Biological Cybernetics, 1992, 67:243-251. 被引量:1
  • 7Chakraborty G, Hirano Y. Genetic algorithm for broadcast scheduling in packet radio networks. IEEE World Congress on Computational Intelligence, Alaska, May, 1998: 183-188. 被引量:1
  • 8Wang G, Ansari N. Optimal broadcast scheduling in packet radio networks using mean field annealing. IEEE J.S.A. Comm., 1997, 15: 250-260. 被引量:1
  • 9Salcedo-Sanz S, Bousono-Calzo C, Figueiras. A mixed neural-genetic algorithm for the broadcast scheduling problem. IEEE Trans. on Wireless Comm., 2003, 2: 277-283. 被引量:1
  • 10Yeo J, Lee H, Kim S. An efficient broadcast scheduling algorithm for tdma ad-hoc networks. Computer Operations Research, 2002, 29 : 1793-1806. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部