期刊文献+

基于互信息特征的网络病毒动态交互约束算法 被引量:2

Dynamic Interactive Constraint Algorithm for Network Viruses Based on Mutual Information Features
下载PDF
导出
摘要 通过对网络病毒的动态交互约束抑制设计,实现对病毒入侵特征的有效识别。传统方法采用模糊网络入侵状态特征向量分解方法实现病毒约束抑制,当病毒入侵为一种非平稳随机信息矢量时,对其识别性能不好。提出一种基于互信息特征提取的网络病毒动态交互约束算法。构建网络病毒入侵的信号分析模型,并进行数据采集,采用数模转换方法进行病毒数据离散采样转换,采用重采样和机器学习结合方法,进行了链路漏洞检测,填补了Web防火墙的漏洞,采用三次B样条小波进行互信息特征提取的结果是渐近最优的,利用互信息特征作为检测系统的输入,进行病毒数据提纯处理,基于平均互信息特征提取算法实现特征建模和提取,实现病毒动态交互约束。仿真结果表明,该算法能使得病毒数据在时频空间上得到较明显的聚焦,频谱峰值突出,提高了病毒特征有效识别率。 The effective recognition of the characteristics of the virus invasion is realized by restraining thedynamic interaction of the network virus. In the traditional method, the method of fuzzy network intrusiondetection is used to implement the virus constraint. When the virus is invaded as a kind of nonstationaryrandom information vector, the identification performance is not good. A dynamic interactiveconstraint algorithm for network virus based on mutual information feature extraction is proposed. Thesignal analysis model of network virus invasion is constructed, and the data acquisition is carried out byusing digital mode conversion method. The data are analyzed by using the method of heavy sampling andmachine learning. The results of Web firewall are extracted. Using three B spline wavelet, the mutualinformation is used as the input. The simulation results show that the algorithm can make the virus datain time frequency space to get a more obvious focus, and the spectrum peak value is outstanding, whichcan improve the recognition rate of the virus.
作者 李冰 李娜
出处 《科技通报》 北大核心 2016年第5期91-95,共5页 Bulletin of Science and Technology
基金 河南省自然科学基金研究项目资助(152300410145) 河南省教育厅科学技术重点研究项目(15B520012)
关键词 病毒 网络安全 动态交互 互信息特征 virus network security dynamic interaction mutual information feature
  • 相关文献

参考文献10

二级参考文献58

  • 1刘睃,狄文辉.基于改进量子遗传算法的入侵检测特征选择[J].计算机测量与控制,2011-4. 被引量:1
  • 2MITOLA J, MAGUIRE G Q. Cognitive radio: making software ra- dios more personal[ J]. IEEE Personal Communications, 1999, 6 (4) : 13 - 18. 被引量:1
  • 3HAYKINS S. Cognitive radio: brain-empowered wireless communi- cation[ J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220. 被引量:1
  • 4HAYKIN S, THOMSON J, REED J H. Spectrum sensing for cogni- tive radio[J]. Proceedings of the IEEE, 2009, 97(5): 849 -877. 被引量:1
  • 5GANDETYO M, REGAZZONI C. Spectrum sensing: a distributed approach for cognitive terminals[ J]. IEEE Journal on Selected Are- as in Communications, 2007, 25(3): 546-557. 被引量:1
  • 6GHAVAMI S, ABOLHASSANI B. Spectrum sensing and power/rate control in CDMA cognitive radio networks[ J]. International Journal of Communication Systems. 2012. 25(2) : 121 - 145. 被引量:1
  • 7LIANG Y-C, ZENG Y, PEH E C Y, et al. Sensing-throughput tradeoff for cognitive radio networks [ J ]. IEEE Transactions on Wireless Communications, 2008, 7(4) : 1326 -1337. 被引量:1
  • 8KANG X, LIANG Y-C, GRAG H K, et al. Sensing-based spectrum sharing in cognitive radio networks [ J ]. IEEE Transactions on Vehicular Technology, 2009, 58 ( 8 ) : 4649 - 4654. 被引量:1
  • 9PEI Y, LIANG Y-C, PEH E C Y, et al. How much time is needed for wideband spectrum sensing? [ J] IEEE Transactions on Wireless Communications, 2009, 8(11 ): 5466-5471. 被引量:1
  • 10STOTAS S, NALLANATHAN A. Optimal sensing time spectrum sensing and power allocation in multihand cognitive radio networks [ J]. IEEE Transactions on Communications, 2011, 59 ( 1 ) : 226 - 235. 被引量:1

共引文献124

同被引文献17

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部