摘要
Let R be a Noetherian ring, I and J two ideals of R, M an R-module and t an integer. Let S be a Serre subcategory of the category of R-modules satisfying the co ondition CI, and N be a finitely generated R-module with SuppRN= V(a) for some a ∈ W(I, J). It is shown that if ExtR^J(N,HI^i,J(M)) ∈ S for all i 〈 t and all j 〈 t - i, then Ha^i(M) ∈ S for all i 〈 t. Let S be the class of all R-modules N with divmR N ≤ k, where k is an integer. It is proved that if Ha^i(M) ∈ S for all i 〈 t and all a ∈ W(I, J), then HI^i,j(M) ∈ S for all i 〈 t. It follows that inf{i : HI^i,j(M) S} = inf(inf{i : Ha^i(M) S): a ∈W(I,J)}.
Let R be a Noetherian ring, I and J two ideals of R, M an R-module and t an integer. Let S be a Serre subcategory of the category of R-modules satisfying the co ondition CI, and N be a finitely generated R-module with SuppRN= V(a) for some a ∈ W(I, J). It is shown that if ExtR^J(N,HI^i,J(M)) ∈ S for all i 〈 t and all j 〈 t - i, then Ha^i(M) ∈ S for all i 〈 t. Let S be the class of all R-modules N with divmR N ≤ k, where k is an integer. It is proved that if Ha^i(M) ∈ S for all i 〈 t and all a ∈ W(I, J), then HI^i,j(M) ∈ S for all i 〈 t. It follows that inf{i : HI^i,j(M) S} = inf(inf{i : Ha^i(M) S): a ∈W(I,J)}.