期刊文献+

碳化硅量子点表面物化特性的计算模拟 被引量:2

Computational Simulation on Surface Physicochemical Properties of SiC Quantum Dots
原文传递
导出
摘要 采用化学腐蚀法制备碳化硅(SiC)量子点荧光材料,对其进行Fourier变换红外光谱分析及X射线粉末衍射结构解析,研究了SiC量子点的晶体结构,而后基于密度泛函理论的CASTEP平面波模守恒赝势对SiC量子点表面不同功能团的吸附机制进行计算模拟。结果表明:SiC量子点属于面心立方晶系,修正后的点阵参数为:a=b=c=0.434 8 nm,α=β=γ=90°,空间群为F-43m,晶型为3C-SiC,每单胞含化学式Z=4。Rietveld精修的2个主要可靠因子分别为:R_p=10.82%,R_(wp)=14.72%。–COOH、–OH功能团能够在SiC量子点表面形成稳定的化学键结合,键能分别为2.65、5.09 eV,并对吸附后构型的态密度、电子密度分布及其成键机理进行了分析探讨。 Silicon carbide quantum dots (SiC-QDs) fluorescent materials were prepared via a simple chemical etching method. The crystal structure and physico-chemical characteristics on the surface of SiC-QDs were investigated by X-ray powder diffraction and Fourier transform infrared spectroscopy (FTIR).The adsorption mechanism of different SiC surface functional groups were simulated based on the CASTEP plane wave model with the density functional theory and the conservation of the pseudo potential. The results show that for the face-centered cubic crystal system (FCC) of SiC-QDs, the final modified unit-cell parameters are a=b=c=0.434 8 nm and α=β=γ=90°, F-43m of space group, 3C-SiC of crystal type, every single cell contained chemical formula Z=4. For -COOH, -OH functional groups, the reliable factors of Rietveld refinement are 10.82% and 14.72%, which can result in the formation of a stable chemical bonds on the surface of the SiC-QDs with bond energy of 2.65 and 5.09 eV, respectively. In addition, the density of states, the electron density distribution and the bonding mechanism of the configuration after adsorption were also analyzed.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第5期733-739,共7页 Journal of The Chinese Ceramic Society
基金 山东省科技发展计划项目(2014GGX102012) 中国博士后科学基金(2013M53163)项目 山东省现代农业产品技术体系果品创新团队专项经费资助项目
关键词 碳化硅量子点 X射线粉末衍射 晶体结构 化学吸附 silicon carbide quantum dots X-ray powder diffraction crystal structure chemical adsorption
  • 相关文献

参考文献19

  • 1FAN J Y, LI H X, JIANG J, et al. 3C-SiC nanocrystals as fluorescent biological labels[J]. Small, 2008, 4(8): 1058–1062. 被引量:1
  • 2SAHU T, GHOSH B, PRDHAN S K, et al. Diverse role of silicon carbide in the domain of nanomaterials[J]. Int J Electrochem, 2012, doi: 10. 1155/2012/271285. 被引量:1
  • 3FAN J Y, WU X L, CHU P K. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties[J]. Prog Mater Sci, 51(2006): 983–1031. 被引量:1
  • 4SADDOW S E. Silicon Carbide Biotechnology: A Biocompatible Semiconductor for Advanced Biomedical Devices and Applications[M]. Oxford: Elsevier' s Science and Technology Rights Department, UK. 2012. 被引量:1
  • 5ZAKHARKO Y, SERDIUK T, NYCHYPORUK T, et al. Plasmonenhaced Photoluminescence of SiC Quantum dots for cell imaging applications[J]. Plasmonics, 2012. DOI 10. 1007/s11468-012-9364-2. 被引量:1
  • 6FUCHS F, SOLTAMOV V A, VATH S, et al. Silicon carbide light-emitting diode as a prospective room temperature source for single photons[J]. Science, 2013(3): 1–4. 被引量:1
  • 7ROSSI A M, MURPHY T E, REIPA V. Ultraviolet Photoluminescence from 6H silicon carbide nanoparticles[J]. Appl Phys Lett, 2008, 92: 253112. 被引量:1
  • 8LI Y, CHEN C X, LI J T, et al. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals[J]. Nanoscale Res Lett, 2011(6): 454–461. 被引量:1
  • 9WANG J, XIONG S J, WU X L, et al. Nanocrystal Solid Films Exhibiting Broad and stable violet to Blue-Green Emission[J]. Nano Lett, 2010(10): 1466–1471. 被引量:1
  • 10宋月鹏,康杰,高东升,李江涛,王晓波,尹承苗,毛志泉.尖孢镰刀菌碳化硅量子点标记及其长时程荧光成像[J].农业工程学报,2013,29(17):286-292. 被引量:18

二级参考文献73

共引文献32

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部