期刊文献+

局部均匀模式描述和双加权融合的人脸识别 被引量:3

Face recognition method based on local mean pattern description and double weighted decision fusion for classification
原文传递
导出
摘要 目的针对LBP算法对边缘及噪声信息比较敏感,提出一种统一化的局部均值模式(ULMP)描述算子。考虑到全局和局部特征在识别上的互补性,提出一种ULMP描述和双加权融合的人脸识别方法。方法首先利用ULMP算法获得整幅图像的编码图,接着将其分块,统计每一子块的直方图获得局部纹理特征,并结合BP神经网络得到局部分类结果。引入云模型求取不同子块的权值,对局部分类结果进行加权融合。整体纹理特征的获取是将不同子块的直方图特征串联。在得到全局和局部的分类结果后,将两者加权集成,获得最终的识别结果。结果在ORL和Yale人脸库上进行实验,ULMP具有很好的识别性能。5幅测试样本时,在ORL库上取得了95.9%的平均识别率,分别比局部二值模式(LBP)、MCT、局部方向模式(LGP)、统一的LBP(ULBP)和局部中心二值模式(CSLBP)高11.3%、10.6%、9.5%、8.9%和3.9%;在Yale库上取得了97.4%的识别率,分别比LBP、MCT、LGP、ULBP和CSLBP高19.9%、17.7%、10.7%和0.7%。在ORL和Yale人脸库上,本文提出的双加权融合模式分别取得了98.5%和98.34%的平均识别率,高于任何单一模块。结论本文提出的纹理提取算法ULMP,具有很好的平滑噪声及边缘信息的作用,适用于面部纹理特征的提取。利用云模型求取的权值的方法能够较好地发挥局部分类器间的集成作用,最终有效地提高了系统的整体性能。双加权融合模式是一种精确且有效的人脸识别方法,适用于静态人脸图像的匹配识别。 Objective The LBP (local binary pattern) algorithm is sensitive to edge and noise. Thus, this study proposes a new algorithm called uniform local mean pattern (ULMP). Considering the complementarity of global and local features on recognition, this study proposes a face recognition method based on ULMP description and double weighted decision fusion for classification. Method First, we use the ULMP algorithm to derive the code diagram of the entire image. The concrete steps to obtain the eight binary codes are implemented by comparing the eight average pixels with the center pixel. Each of the eight values is obtained by computing the average pixels of the eight directions, three horizontal directions, three verti- cal directions, and two diagonal directions. Each binary code is multiplied by the corresponding weight coefficient and then added to derive the ULMP coding value of the center pixel and the code pattern of the entire image. Then, the code diagram is divided into equal sub-blocks and each sub-block histogram is assessed to determine the local texture features. The global texture feature is obtained by connecting the histogram of different sub-block features. To emphasize the importance of dif- ferent sub-blocks in the final recognition, this study introduces the cloud model and structure-based classifiers by construc- ting sub-image sets to obtain the weight of each sub-block. In the testing phase, each block of the statistical characteristics of a test sample is combined with the BP neural network to determine the posterior probability of each category. We use the weights calculated by the cloud model fused with the linear weighted decision to derive the local classification results. After obtaining the results of local and global classification, we conducted weighted integration to obtain the final recognition re- suits. Result The experimental results on the ORL and Yale face database show that the ULMP exhibits good recognition performance. The average recognition rate is 95. 9% on the ORL
出处 《中国图象图形学报》 CSCD 北大核心 2016年第5期565-573,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(61432004 61300119) 安徽省自然科学基金项目(1408085MKL16)~~
关键词 人脸识别 局部均值模式 双加权融合 云模型 face recognition local mean pattern (LMP) double weighted decision fusion cloud model
  • 相关文献

参考文献25

  • 1Chakraborti T, Chatterjee A. A novel binary adaptive weight GSA based feature selection for face recognition using local gradi- ent patterns, modified census transform, and local binary patterns I J]. Engineering Applications of Artificial Intelligence, 2014, 33 : 80-90. [DOI: 10. 1016/j. engappai. 2014.04. 006]. 被引量:1
  • 2吴煌鹏,戴声奎.基于ULBP特征子空间的2DLDA人脸识别方法[J].模式识别与人工智能,2014,27(10):894-899. 被引量:6
  • 3Huang Z H, Li W J, Wang J, et al. Face recognition based on pixel-level and feature-level fusion of the top-level's wavelet sub- bands[J]. Information Fusion, 2015, 22: 95-104. [DOI: 10. 1016/j. inffus. 2014.06. 001 ]. 被引量:1
  • 4Tan K R, Chen S C. Adaptively weighted sub-pattern PCA for face recognition [ J ]. Neurecomputing, 2005, 64: 505-511. [DOI : 10. 1016/j. neucom. 2004.10.113 ]. 被引量:1
  • 5Zuo W M, Zhang D, Yang J, et al. BDPCA plus LDA: a novel fast feature extraction technique for face recognition [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B : Cyber- netics, 2006, 36 (4) : 946-953. [DOI: 10. ll09/TSMCB. 2005. 863377 ]. 被引量:1
  • 6Hu Haifeng. Variable lighting face recognition using discrete wavelet transform [ J]. Pattern Recognition Letters, 2011, 32 ( 13 ) : 1526-1534. [ DOI: 10. 1016/j. patree. 2011.06. 009 ]. 被引量:1
  • 7Zhu NB, Tang T, Tang S, et al. A sparse representation method based on kernel and virtual samples for face recognition [ J ]. Optik-lnternational Journal for Light and Electron Optics, 2013, 124 (23) : 6236-6241. [ DOI : 10. 1016/j. ijleo. 2013.05. 017 ]. 被引量:1
  • 8张洁玉,武小川.加权局部二值模式的人脸特征提取[J].中国图象图形学报,2014,19(12):1794-1801. 被引量:15
  • 9张洁玉,赵鸿萍,陈曙.自适应阈值及加权局部二值模式的人脸识别[J].电子与信息学报,2014,36(6):1327-1333. 被引量:41
  • 10Bilaniuk O, Fazlemi E, Laganiere R, et al. Fast LBP Face Detec- tion on Low-Power SIMD Architectures [ C ]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington DC : IEEE Computer Society, 2014 : 630- 636. 被引量:1

二级参考文献111

共引文献1392

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部