期刊文献+

基于最小控制GARCH模型的噪声估计算法 被引量:6

Noise Estimate Algorithm Based on Minima Controlled GARCH Model
下载PDF
导出
摘要 MCRA(Minima-Controlled Recursive Averaging)方法是经典的噪声估计算法,然而在语音段MCRA方法存在不能对噪声功率谱进行有效更新的问题.针对这一问题,本文利用广义自回归条件异方差(Generalized Autoregressive Conditional Heteroskedasticity,GARCH)模型在时频域对噪声信号建模,在MCRA算法原理的基础上,提出了基于最小控制GARCH模型的噪声估计算法,实验结果表明,本文所提的噪声估计算法能够更为准确估计噪声功率谱,将该算法应用到语音增强中能够获得到较好的语音增强效果. Considering the problem that the typical M CRA( M inima-Controlled Recursive Averaging) noise estimate algorithm fails to update the pow er spectrum of noise effectively w hen the speech is present,so this paper proposes a noise estimate algorithm based on minima controlled GARCH model. The noise signal is modeled as a GARCH process in timefrequency domain and then the proposed noise estimate algorithm is achieved combined w ith the basis of the framew ork of M CRA method. Experimental and testing results indicate that the proposed algorithm can estimate the spectrum of noise more accurately compared w ith the reference methods. When the proposed algorithm is applied into speech enhancement,a better performance can be achieved as w ell.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第3期747-752,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61471014)
关键词 噪声估计 GARCH模型 MCRA算法 语音增强 noise estimate GARCH model M CRA algorithm speech enhancement
  • 相关文献

参考文献1

二级参考文献8

  • 1Hendriks R C,Heusdens R,Jensen J.MMSE Based Noise PSDTracking with Low Complexity[C]//Proc.of 2010 InternationalConference on Acoustics,Speech,and Signal Processing.[S.l.]:IEEE Press,2010:4266-4269. 被引量:1
  • 2Yu Rongshan.A Low-complexity Noise Estimation AlgorithmBased on Smoothing of Noise Power Estimation and EstimationBias Correction[C]//Proc.of 2009 IEEE International Conferenceon Acoustics,Speech,and Signal Processing.Taipei,China:[s.n.],2009:4421-4424. 被引量:1
  • 3Martin R.Noise Power Spectral Density Estimation Based onOptimal Smoothing and Minimum Statistics[J].IEEE Trans.onAudio,Speech,and Language Processing,2001,9(5):504-512. 被引量:1
  • 4Ohen I.Noise Spectrum Estimating in Adverse Environments:Improved Minima Controlled Recursive Averaging[J].IEEE Trans.on Audio,Speech,and Language Processing,2003,11(5):466-475. 被引量:1
  • 5Erkenlens J S,Heusdens R.Tracking of Non-stationary NoiseBased PM Data-driven Recursive Noise Power Estimation[J].IEEE Trans.on Audio,Speech,and Language Processing,2008,16(6):1112-1123. 被引量:1
  • 6ITU.ITU-T P.563-2004 Single-ended Method for ObjectiveSpeech Quality Assessment in Narrow-band TelephonyApplications[S].2004. 被引量:1
  • 7牛铜,张连海,屈丹.基于加权最小统计的噪声谱估计改进算法[J].电子与信息学报,2009,31(5):1166-1169. 被引量:7
  • 8曾毓敏,王鹏.基于双向搜索方法的最小值控制递归平均语音增强算法[J].声学学报,2010,35(1):81-87. 被引量:8

共引文献5

同被引文献23

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部