摘要
This Letter introduces a trigger-controlled Geiger-mode avalanche photodiode (GM-APD). A hierarchical look- back-upon tree recurrence method is given to predict the performance of trigger-controlled GM-APDs under different trigger-count upper limits. In addition, the normalized detection probability is defined to evaluate the detection performance of trigger-controlled GM-APDs in typical weak optical signal detection (impulse noise and continuous noise situations). Theoretical analyses show that the trigger-controlled GM-APD improves the detection performance of GM-APDs in weak optical signal detection via the optimization of the trigger-count upper limit, compared with single-trigger and multi-trigger GM-APDs.
This Letter introduces a trigger-controlled Geiger-mode avalanche photodiode (GM-APD). A hierarchical look- back-upon tree recurrence method is given to predict the performance of trigger-controlled GM-APDs under different trigger-count upper limits. In addition, the normalized detection probability is defined to evaluate the detection performance of trigger-controlled GM-APDs in typical weak optical signal detection (impulse noise and continuous noise situations). Theoretical analyses show that the trigger-controlled GM-APD improves the detection performance of GM-APDs in weak optical signal detection via the optimization of the trigger-count upper limit, compared with single-trigger and multi-trigger GM-APDs.