期刊文献+

On Behavior of Solutions to a Class of Nonlinear Hyperbolic Inverse Source Problem

On Behavior of Solutions to a Class of Nonlinear Hyperbolic Inverse Source Problem
原文传递
导出
摘要 This article is concerned with a class of hyperbolic inverse source problem with memory term and nonlinear boundary damping. Under appropriate assumptions on the initial data and pa- rameters in the equation, we establish two results on behavior of solutions. At first we proved stability of solutions when the integral overdetermination tends to zero as time goes to infinity and finally a blow-up result is established for certain solution with positive initial energy. This article is concerned with a class of hyperbolic inverse source problem with memory term and nonlinear boundary damping. Under appropriate assumptions on the initial data and pa- rameters in the equation, we establish two results on behavior of solutions. At first we proved stability of solutions when the integral overdetermination tends to zero as time goes to infinity and finally a blow-up result is established for certain solution with positive initial energy.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第6期683-698,共16页 数学学报(英文版)
关键词 Inverse problem asymptotic stability blow up MEMORY boundary feedback Inverse problem, asymptotic stability, blow up, memory, boundary feedback
  • 相关文献

参考文献2

二级参考文献47

  • 1Aassila M,Cavalcanti M M,Domingos Cavalcanti V N. Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term[J].Calc Var Partial Differ Equ,2002,(02):155-180. 被引量:1
  • 2Aassila M,Cavalcanti M M,Soriano J A. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[J].SIAM Journal on Control and Optimization,2000,(05):1581-1602. 被引量:1
  • 3Adams R A. Sobolev Spaces[M].New York:Academic Press,Inc,1975. 被引量:1
  • 4Alabau-Boussouira F,Cannarsa P,Sforza D. Decay estimates for second order evolution equations with memory[J].Journal of Functional Analysis,2007,(05):1342-1372. 被引量:1
  • 5Appleby J A D,Fabrizio M,Lazzari B,Reynolds D W. On exponential asymptotic stability in linear viscoelasticity[J].Mathematical Methods in the Applied Sciences,2006.1677-1694. 被引量:1
  • 6Arosio A,Spagnolo S. Global solution of the Cauchy problem for a nonlinear hyperbolic equation[A].College de France Seminar,1984. 被引量:1
  • 7Balakrishnan A V,Taylor L W. Distributed parameter nonlinear damping models for flight structures[A].1989. 被引量:1
  • 8Bass R W,Spillover D Z. Nonlinearity and flexible structures[A].NASA Conference Publication 10065,1991.1-14. 被引量:1
  • 9Cavalcanti M M,Domingos Cavalcanti Valéria N,Lasiecka I. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction[J].Journal of Differential Equations,2007,(02):407-459. 被引量:1
  • 10Cavalcanti M M,Domingos Cavalcanti V N,Prates Filho J S,Soriano J A. Existence and exponential decay for a Kirchhoff-Carrier model with viscosity[J].Journal of Mathematical Analysis and Applications,1998,(01):40-60. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部