期刊文献+

一种改进的关联规则并行算法 被引量:2

An Improved Rule Association Parallel Mining Algorithm
下载PDF
导出
摘要 经典的关联规则求解算法(如Apriori算法)是串行算法,当数据量比较大时挖掘效率较低;提出了新的并行BVP算法,BVP算法通过多线程并行读取数据并计算相应的数据特征,然后计算频繁项集和关联规则;实验结果表明:相对于经典Apriori算法,算法执行效率更高。 The classical algorithm of association rules( such as Apriori algorithm) is a serial algorithm,when the data volume is relatively large,mining efficiency is low. A new parallel BVP algorithm is proposed. The BVP algorithm reads data from multiple threads and calculates the corresponding data. Then,the frequent itemsets and association rules are computed. Experimental results show that the algorithm is more efficient than the classical Apriori algorithm.
出处 《重庆工商大学学报(自然科学版)》 2016年第3期47-50,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 安徽高校省级自然科学基金重点项目(KJ2014A038)
关键词 数据挖掘 关联规则 并行 频繁项集 data mining association rules parallel frequent itemsets
  • 相关文献

参考文献9

  • 1PANGN,T.Introduction to Data Mining[M].北京:人民邮电出版社,2015.201.293. 被引量:1
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining Associ- ation Rules Between Sets of Items in Large Databases[ J].Acm Sigrnod Record, 1993,22(2) : 207-216. 被引量:1
  • 3AGRAWAL R, SHAFER J. Parallel Mining of Association Rules[J].IEEE Trans Knowledge and Data Eng, 1996, 8 (6) : 962-969. 被引量:1
  • 4ZAKI M J. Parallcd Data Mining for Association Rules on Shared-Memory Multi-Processors [ M ]. Proceedings of Sup- ercomputing, Los Alamitos : IEEE Computer soc.Press, 1996. 被引量:1
  • 5LIU L, LI E, ZHANG Y, et al. Optimization of frequent item- set mining on multiple-core processors [ G ] // Procee-dings of 33rd International Con-ference on Very Large Data Bases, 2007. 被引量:1
  • 6王智钢,王池社,马青霞.分布式并行关联规则挖掘算法研究[J].计算机应用与软件,2013,30(10):113-115. 被引量:13
  • 7JING S, LEI X H. Mining Frequent Closed Itemsets Over Data Stream Based On Bitvector and Digraph[ J ] .2010 2nd International Conference on Future Computer and Commun- ication,2010,2( 1 ) : 241-246. 被引量:1
  • 8石杰.一种快速频繁模式挖掘算法[J].烟台大学学报(自然科学与工程版),2015,28(2):113-118. 被引量:5
  • 9陈丽芳.基于Apriori算法的购物篮分析[J].重庆工商大学学报(自然科学版),2014,31(5):84-89. 被引量:11

二级参考文献29

  • 1谈克林,孙志挥.一种FP树的并行挖掘算法[J].计算机工程与应用,2006,42(13):155-157. 被引量:10
  • 2Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [ C ]//Proceedings of ACM SIGMOD In- ternational Conference on Management of Date, 1993:207 - 216. 被引量:1
  • 3Agrawal R, Srikant R. Fast algorithms for mining association rules [C]//Proceedings of the 1994 International Conference on Very Large Data Bases, 1994:487 - 499. 被引量:1
  • 4Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Gen- eration[ C]//Proceedings of ACM SIGMOD International Conference on Management of Data,2000 : 1 - 12. 被引量:1
  • 5Pramudiono I, Kitsuregawa M. Parallel FP-Growth on PC cluster[ C ]// Proceedings of International Conference on Internet Computing,2003 : 467 - 473. 被引量:1
  • 6Zaiane O R, Mohammad E H, Lu P. Fast parallel association rule mining without candidacy generation[ C]//Proceedings of 1st IEEE International Conference on Data Mining,2001 : 665 - 668. 被引量:1
  • 7Liu L, Li E, Zhang Y, et al. Optimization of frequent item-set mining on multiple-core processors [ C ]//Proceedings of 33 rd International Con- ference on Very Large Data Bases,2007:1275-1285. 被引量:1
  • 8Han Jiawei, Kamber M. Data Mining Concept and Tech- niques [ M ]. San Francisco: Morgan Kaufmann Publishers, 2001. 被引量:1
  • 9Eltabakh M Y, Ouzzani M, Khalil M A, et al. Incremen-tal mining for frequent patterns in evolving time series database [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2008,7 ( 2 ) : 158-165. 被引量:1
  • 10Pei Jian, Han Jiawei, Lu Hongjun, et al. H-mine: Fast and space preserving frequent pattern mining in large database [J]. Data Mining and Knowledge Discovery,2001,11 (2) :53- 87. 被引量:1

共引文献26

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部