期刊文献+

基于脑电信号的ILDB情感特征提取算法 被引量:6

EGG-Based ILDB Algorithm of Emotion Feature Extration
下载PDF
导出
摘要 近年来,随着信号处理和机器学习技术的快速发展,基于脑电信号的情感识别越来越受到重视。特征提取是情感识别过程中的关键一步。本文提出了改进的局域判别基(Improved Local Discriminant Bases,ILDB)算法,提取信号局域判别基各子空间的能量和系数均值特征构成特征向量,利用SVM分类器进行分类,通过对特征向量类可分性及分类正确率的评估,表明ILDB算法提取的特征具有可分性且分类正确率较高。ILDB算法的通道最高平均分类正确率达到88%,通道最高平均分类正确率比LDB算法提高4.4%和7.2%,所有通道平均分类正确率比LDB算法提高10.1%和9.8%。 In recent years,with the rapid development of signal processing and machine learning technology,EEG-based emotion recognition has received more and more attention,in which feature extraction is a key step.This paper proposes an improved local discriminant bases(ILDB)algorithm,in which both the energy and the mean of each signal subspace coefficients are extracted from ILDB to construct feature vectors and SVM is utilized to classify.By assessing the separability of feature vectors and classification accuracy rate,the extracted features via ILDB are separable and have higher classification accuracy.The highest average classification accuracy rate of ILDB algorithm can attain 88%,which is 4.4%and 7.2% higher than that of LDB algorithm.Moreover,the average classification accuracy rate in all channels of ILDB algorithm increases by 10.1% and 9.8%.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第2期254-259,276,共7页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60974066)
关键词 情感识别 ILDB SVM emotion recognition ILDB SVM
  • 相关文献

参考文献10

  • 1SHAN Caifeng, GON Shaogang, MCOWAN P W. Robust facial expression recognition using local binary patterns[C]// Proceedings of International Conference on Image Processing. Genoa, Italy: IEEE, 2005 : 370-373. 被引量:1
  • 2PICARD R W, VYZAS E, HEALEY J. Toward machine emotional intelligence:Analysis of affective physiological state [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23 (10) : 1175 1191. 被引量:1
  • 3LIU Yisi, SOURINA O. EEC- databases for emotion recognition [C]//2013 International Conference on Cyber Worlds (CW). Yokohama : IEEE, 2013 : 302-309. 被引量:1
  • 4AZLAN W A W, LOW Y F. Feature extraction of electroencephalogram (EEG) signal: A review [C]//2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). USA: IEEE, 2014 : 801 806. 被引量:1
  • 5柳革命,孙超,陈建莉.基于局域判别基空间能量的特征提取[J].空军工程大学学报(自然科学版),2008,9(1):33-36. 被引量:2
  • 6ZHENG J iming,WEI Guohua, YANG Chunde. Modified local discriminant bases and its application in audio feature extraction[C]//2009 International Forum on Information Technology and Applications IEEE Computer Society. USA: IEEE, 2009 : 49-52. 被引量:1
  • 7COIFMAN R R, WlCKERHAUSE M V. Entropy-based algorithms for best basis selection[J]. IEEE Transactions on Information Theory,1992,38(2) :713-719. 被引量:1
  • 8王慧琴主编..小波分析与应用[M].北京:北京邮电大学出版社,2011:178.
  • 9SAITO N, COWMAN R R. Local discriminant bases and their applications[J]. Journal of Mathematical Imaging and Vision, 1995,5(4):337 358. 被引量:1
  • 10SERGIOSTheodoridis.PatternRecognition[M].北京:电子工业出版社,2010. 被引量:1

二级参考文献9

共引文献1

同被引文献24

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部