期刊文献+

基于混合蛙跳思想的蚁群算法及路径优化研究 被引量:1

Ant Colony Algorithm Based on Shuffled Frog Leaping Algorithm and Path Optimization Research
下载PDF
导出
摘要 针对基本蚁群算法存在容易陷入局部最优解出现早熟停滞状态的缺点,提出了基于混合蛙跳思想的蚁群算法,并应用于城市交通路径寻优研究。通过引入混合蛙跳算法的全局信息共享和局部深度搜索机制,提高了蚁群算法跳出局部最优解的能力与全局收敛性。以重庆市渝中半岛的路网为实例计算以行程时间为目标的最优路径,实验结果表明该算法有效改善了基本蚁群算法的全局搜索能力,同时为解决城市交通路径寻优问题获得了较好的效果。 Due to the disadvantage of local optimum of basic ant colony algorithm, an improved ant colony algorithm based on shuffled frog leaping algorithm is proposed and applied on study about optimal route of urban road network. The global information sharing mechanism and local depth search ability of shuffled frog leaping algorithm are introduced to increase the convergence rate and the capability to avoid precocity and stagnation of basic ant colony algorithm. The road network of Chongqing Yuzhong Peninsula is taken as an example to calculate the optimal route based on the least travel time. The experimental results show that the proposed algorithm has much higher capacity of global optimization than basic ant colony algorithm and it is feasible and effective for optimal route choice.
作者 杜长海
机构地区 重庆市公安局
出处 《自动化技术与应用》 2016年第4期6-9,14,共5页 Techniques of Automation and Applications
关键词 智能交通系统 蚁群算法 混合蛙跳算法 最优路径 intelligent transportation system ant colony algorithm shuffled frog leaping algorithm optimal route
  • 相关文献

参考文献11

  • 1FENG YUQIN,LENG JUNQIANG,XIE ZHONGYU,et al. Route choice model considering generalized travel cost based on game theory[J]. Mathematical Problems in Engineering, 2013(1) : 1-5. 被引量:1
  • 2吴正言,莫时旭.交通拥堵情况下路径诱导方案的生成方法[J].武汉理工大学学报(交通科学与工程版),2015,39(1):5-8. 被引量:5
  • 3FU L,SUN D,RILETT L R.Heuristic shor- test path algorithms for transportation applications. state of the art[J].Computers& Operations Research, 2006,33(1) : 3324-3343. 被引量:1
  • 4MOHEMMED A W,SAHOO N C,GEOK T K.Solvi ng shortest path problem uag particle swarm optimization[J]. Applied Soft Computing, 2008,8(4): 1643-1653. 被引量:1
  • 5MAINAL M K,MABU S,HIRASAWA K.Pruning high-level network using genetic algorithm for efficient hierarchical route planning in road networks[C]//IEEE Annual Conference. Tokyo. IEEE, 2011 : 2903-2909. 被引量:1
  • 6崔铁军,马云东.时间递推耦合神经网络的交通路径动态诱导技术[J].计算机应用研究,2013,30(10):2932-2935. 被引量:4
  • 7杨琰,廖伟志,李文敬,杨文,李杰.基于Petri网的顾及转向延误的最优路径算法[J].计算机工程与设计,2013,34(10):3643-3648. 被引量:8
  • 8REED M,YIANNAKOU A,EVERING R.An ant colony algorithm for the multi-compartment vehicle routing problem[J]. Applied Soft Computing, 2014, (15): 169-176. 被引量:1
  • 9HOSEINI P,SHAYESTEH M G.Efficient contrast enhancement of images using hybrid ant colony optimization,genetic algorithm,and simulated annealing[J]. Digital Signal Processing, 2013,23(3): 879-893. 被引量:1
  • 10VAISAKH K,REDDY A S.MSFLA/GHS/SFLA-GHS/SDE algorithms for economic dispatch problem considering multiple fuels and valve point loadings[J]. Applied Soft Computing, 2013,13( 11 ) .. 4281-4291. 被引量:1

二级参考文献47

  • 1李威武,王慧,钱积新.智能交通系统中路径诱导算法研究进展[J].浙江大学学报(工学版),2005,39(6):819-825. 被引量:33
  • 2包煊,朱雪良,王义生,关积珍.VMS发布动态交通诱导信息的探讨[J].现代显示,2006(6):63-65. 被引量:9
  • 3汤可宗,杨静宇.遗传算法与粒子群优化算法的改进及应用研究[D].南京:南京理工大学,2011. 被引量:6
  • 4DDJKSTRA E W. A note on two problems in connection with graphs[J]. Numerische Mathematik, 1959,1 (5) :269-271. 被引量:1
  • 5FLOYD R W. Algorithm 97: shortest path [ J]. Communication ofthe ACM,1962,5(6) :345. 被引量:1
  • 6CRAUSER A, MEHLHORN K, MEYER U,et al. A parallelizationof Dijkstra, s shortest path algorithm [ C] //Proc of the 23rd Symposi-um on Mathematical Foundations of Computer Science. 1998 : 722-731. 被引量:1
  • 7AI-HABBAL M B,KOUTSOPOULOS H N, LERMAN S R. A decom-position algorithm for the all-pairs shortest path problem on massivelyparallel computer architectures [ J]. Transportation Science, 1994,28(3) :273-290. 被引量:1
  • 8ZILIASKOPOULOS A K, KOTZINOS D, MAHMASSANI H S. De-sign and implementation of parallel time-dependent least time path al-gorithm for intelligent transportation system applications [ J]. Trans-portation Research Part C,1997,5(2) :95-107. 被引量:1
  • 9CUI Wei-hong, SHI Wen-zhong, LI Xiao-juan,et al. Research on afeature based spatio-temporal data model [ C]//Lecture Notes inGeoinformation and Colonography. 2006 : 151 -167. 被引量:1
  • 10RAJMOHAN M,SHAHABUDEEN P. Genetic algorithm based ap-proach for vehicle routing problem with time windows [ J]. Interna-tional Journal of Logistics Systems and Management, 2008,4(3):175-179. 被引量:1

共引文献15

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部